Chemistry Letters Vol.33, No.4 (2004)
441
Table 1. ꢀ-Lactam formation
6.82 (1H, d, J ¼ 8 Hz, indole), 7.04 (1H, dt, J ¼ 8, 1 Hz,
indole), 7.24 (1H, dt, J ¼ 8, 1 Hz, indole), 7.34 (2H, d,
J ¼ 8 Hz, indole), 8.15 (1H, br s, NH of indole); 13C NMR
(CDCl3, 75 MHz) ꢃ 13.9, 42.5, 55.3, 61.0, 64.0, 110.5,
114.2, 119.9, 123.0, 124.7, 129.4, 129.5, 138.0, 140.5,
154.3, 169.6, 179.0; Anal. Calcd for C19H20N2O4: C,
67.05; H, 5.92; N, 8.23. Found: C, 67.05; H, 6.00; N, 8.13%.
a) S. Kobayashi, T. Iimori, Y.-F. Wang, T. Izawa, and M.
Ohno, J. Am. Chem. Soc., 103, 2405 (1981). b) H. Huang,
N. Iwasawa, and T. Mukaiyama, Chem. Lett., 1984, 1465.
In the case of Entries 1–3, a small amount of amide derived
from 5a with p-anisidine was obtained, which suggested
elimination of p-anisidine from the activated ester of 5a.
Mp 234–237 ꢃC; IR (KBr) ꢂmax 3279, 1783, 1690, 1618,
O
COOH
NHR2
NR2
O
CH3CN
reflux
O
N
N
R1
R1
R2 = PMP
R2 = PMP
R2 = H
6a R1 = H
5a R1 = H
R2 = H
R11 = H
5
6
7
6b
5b
5c
R11 = H
R2 = H
R2 = H
R = Me
6c
R = Me
a
Entry
Substrate
Reagents
Product
Yield/%
1
2
3
5a
5a
5a
(PyS)2, Ph3P
7, Et3N
6a
6a
6a
15
20
26
1475 cmꢂ1 1H NMR (CDCl3, 400 MHz) ꢃ 3.24 (1H, dd,
;
8, Et3N
J ¼ 14:5, 1 Hz, –CHAHB–), 3.25 (3H, s, NMe), 3.48 (1H,
dd, J ¼ 14:5, 2 Hz, –CHAHB–), 6.30 (1H, brs, –NH), 6.89
(1H, d, J ¼ 8 Hz, indole), 7.15 (1H, dt, J ¼ 8, 1 Hz, indole),
7.39 (1H, dt, J ¼ 8, 1 Hz, indole), 7.46 (2H, d, J ¼ 8 Hz, in-
dole); 13C NMR (CDCl3, 100 MHz) ꢃ 26.6, 51.0, 55.9, 108.8,
123.3, 123.4, 126.6, 130.5, 143.6, 166.6, 175.0. HRMS
(FAB) m=z calcd for C11H11N2O2 203.0821, found
203.0822.
4
5
6
5b
5b
5b
(PyS)2, Ph3P
7, Et3N
6b
6b
6b
13
16
39
8, Et3N
7
8
9
5c
5c
5c
(PyS)2, Ph3P
7, Et3N
6c
6c
6c
13
16
70
8
9
T. Nagamatsu and T. Kunieda, Chem. Pharm. Bull., 36, 1249
(1988).
8, Et3N
a
All reactions were carried out in [0.01 M] as a substrate
concentration.
For examples of Cu-mediated reaction, a) A. Klapars, J. C.
Antilla, X. Huang, and S. L. Buchwald, J. Am. Chem. Soc.,
123, 7727 (2001). b) K. Yamada, T. Kubo, H. Tokuyama,
and T. Fukuyama, Synlett, 2002, 231. c) R. Shen and J. A.
Porco, Jr., Org. Lett., 2, 1333 (2000). For reviews of Pd-
catalyzed reaction, d) B. H. Yang and S. L. Buchwald, J.
Organomet. Chem., 576, 125 (1999). e) J. F. Hartwig,
Angew. Chem., Int. Ed. Engl., 37, 2046 (1998).
Ph
I
O
O
Cl
Ph
Cl
H
9
H
N
+
N
6c
a
I
O
O
N
H
N
Ph
(91%)
10 L. Jiang, G. E. Job, A. Klapars, and S. L. Buchwald, Org.
Lett., 5, 3667 (2003); The first report of Cu-mediated
emamide formation: T. Ogawa, T. Kiji, K. Hayami, and H.
Suzuki, Chem. Lett., 1991, 1443.
11 S. Uemura, H. Okazaki, A. Onoe, and M. Okano, J. Chem.
Soc., Perkin Trans. 1, 1977, 676.
Me
Me
10a
10b
Scheme 2. Reagents and Conditions, (a) (CH2NHMe)2, CuI,
K2CO3, toluene, reflux.
Grant-in-Aid for the 21st Century COE Program from the
Ministry of Education, Culture, Sports, Science and Technology
of Japan (MEXT).
12 10a: IR (KBr) ꢂmax 1776, 1727, 1617, 1470 cmꢂ1; 1H NMR
(CDCl3, 400 MHz) ꢃ 2.87 (3H, s, NMe), 3.11 (1H, d, J ¼
15 Hz, –CHAHB–), 3.48 (1H, d, J ¼ 15 Hz, –CHAHB–),
6.51 (1H, d, J ¼ 8 Hz, indole), 6.78 (1H, s, vinyl), 6.98
(2H, d, J ¼ 7:5 Hz, phenyl), 7.03–7.10 (3H, m, aromatic),
7.15 (1H, t, J ¼ 7:5 Hz, Ph), 7.20 (1H, d, J ¼ 7 Hz, indole),
7.27 (1H, dt, J ¼ 8, 1.5 Hz, indole); 13C NMR (CDCl3,
100 MHz) ꢃ 26.5, 32.2, 50.8, 61.7, 108.9, 117.8, 121.7,
122.9, 123.1, 124.0, 127.5, 127.7, 128.7, 129.2, 130.3,
134.7, 143.2, 163.4, 172.8; HRMS (FAB) calcd for
C19H16N2O2Cl1 339.0900, Found 339.0901. 10b: IR (KBr)
References and Notes
1
a) L. Chevolot, A.-M. Chevolot, M. Gajhede, C. Lasen, U.
Anthoni, and C. Christophersen, J. Am. Chem. Soc., 107,
4542 (1985). b) U. Anthoni, L. Chevolot, C. Larsen, P. H.
Nielsen, and C. Christophersen, J. Org. Chem., 52, 4709
(1987).
a) X. Lin and S. M. Weinreb, Tetrahedron Lett., 42, 2631
(2001). b) C. Sun, X. Lin, and S. M. Weinreb, 19th Interna-
tional Congress of Heterocyclic Chemistry, Colorado,
August, 2003, Abstr., p 324.
2
ꢂmax 1763, 1725, 1617, 1472 cmꢂ1
;
1H NMR (CDCl3,
400 MHz) ꢃ 2.80 (3H, s, NMe), 3.13 (1H, d, J ¼ 15 Hz,
–CHAHB–), 3.40 (1H, d, J ¼ 15 Hz, –CHAHB–), 6.46 (1H,
d, J ¼ 8 Hz, indole), 6.77 (2H, d, J ¼ 7 Hz, Ph), 6.78 (1H,
s, vinyl), 7.03–7.17 (4H, m, aromatic), 7.25 (1H, dt, J ¼ 8,
1 Hz, indole), 7.35 (1H, d, J ¼ 8 Hz, indole); 13C NMR
(CDCl3, 100 MHz) ꢃ 26.1, 47.8, 50.5, 67.8, 108.4, 116.1,
123.1, 123.4, 125.3, 126.0, 127.5, 128.4, 128.8, 129.8,
130.5, 132.9, 142.4, 164.0, 173.2; HRMS (FAB) m=z calcd
for C19H16N2O2I1 431.0257, found 431.0260.
3
4
M. Rajopadhye and F. D. Popp, J. Heterocycl. Chem., 21,
289 (1984).
Mp 172–175 ꢃC. IR (KBr) ꢂmax 3193, 1735, 1616,
1235 cmꢂ1 1H NMR (CDCl3, 300 MHz) ꢃ 1.16 (3H, t,
;
J ¼ 7 Hz, OCH2CH3), 2.89 (1H, d, J ¼ 15 Hz, –CHAHB–),
2.98 (1H, d, J ¼ 15 Hz, –CHAHB–), 3.62 (3H, s, –OMe),
4.10 (2H, m, OCH2CH3), 4.91 (1H, br s, NH), 6.42 (2H,
dt, J ¼ 9, 3 Hz, PMP), 6.54 (2H, dt, J ¼ 9, 3 Hz, PMP),
Published on the web (Advance View) March 20, 2004; DOI 10.1246/cl.2004.440