3690
J. C. Borah et al. / Tetrahedron Letters 45 (2004) 3689–3691
NO2
NO2
NO2
i
OBn
ii
OBn
OHC
O
+
OH
OAc
2
(2R,3S)-3
(2R,3S)-4
iii
PhCONH
NH2
O
NH2
O
iv
v,vi
OH
OH
OH
OAc
OAc
OH
(2R,3S)-5
(2R,3S)-6
(2R,3S)-7
Scheme 2. Reagents and conditions: (i) La-(R)-BINOL (10 mol %), THF, ꢀ50 ꢁC (80%); (ii) Ac2O/Py(93%); (iii) 10% Pd/C, Et 2OH, H2, rt (80%); (iv)
CrO3, glacial acetic acid, water, 5 ꢁC (82%); (v) benzoyl chloride, Et3N, 0 ꢁC (80%); (vi) Et2NMe–H2O (85%).
9289–9292; (e) Hamamoto, H.; Mamedov, V. A.; Kita-
LaCl3Æ7H2O,
dilithium
(R)-(þ)-binaphthoxide
moto, M.; Hayashi, N.; Tsuboi, S. Tetrahedron: Asymme-
try 2000, 11, 4485–4497; (f) Wang, Z.-M.; Kolb, H. C.;
Sharpless, K. B. J. Org. Chem. 1994, 59, 5104–5105.
4. (a) Henry, L. C. R. Acad. Sci. Ser. C 1895, 1265; (b)
Henry, L. C. R. Bull. Soc. Chim. Fr. 1895, 13, 999–1004;
(c) Luzzio, F. A. Tetrahedron 2001, 57, 915–945.
5. (a) Bloom, J. D.; Dutia, M. D.; Johnson, B. D.; Wissner,
A.; Burns, M. G.; Largis, E. E.; Dolan, J. A.; Claus, T. H.
J. Med. Chem. 1992, 35, 3081–3084; (b) Howe, R.; Rao, B.
S.; Holloway, B. R.; Stribling, D. J. Med. Chem. 1992, 35,
1751–1759.
6. Askin, D.; Wallace, M. A.; Vacca, J. P.; Reamer, R. A.;
Volante, R. P.; Shinkai, I. J. Org. Chem. 1992, 57, 2771–
2773.
7. Ohfune, Y. Acc. Chem. Res. 1992, 25, 360–366.
8. Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M.
J. Am. Chem. Soc. 1992, 114, 4418–4420.
9. (a) Sarma, B. K.; Barua, N. C. Tetrahedron 1993, 49,
2253–2260; (b) Sarma, B. K.; Barua, N. C. Ind. J. Chem.
1993, 32B, 615–617; (c) Saikia, A. K.; Hazarika, M. J.;
Barua, N. C.; Bezbarua, M. S.; Sharma, R. P.; Ghosh, A.
C. Synthesis 1996, 981–985; (d) Bezbarua, M. S.; Saikia,
A. K.; Barua, N. C.; Kalita, B. Synthesis 1996, 1289–1290;
(e) Bez, G.; Bezbarua, M. S.; Saikia, A. K.; Barua, N. C.
Synthesis 2000, 537–540; (f) Barua, A.; Kalita, B.; Barua,
N. C. Synlett 2000, 1064–1066.
(1 mol equiv), NaO-t-Bu (1 mol equiv) and H2O
(4 mol equiv) in THF gave the nitro-aldol product
(2R,3S)-3 in 90% ee13 and in 80% yield (Scheme 2).
The nitro-aldol product (2R,3S)-3 was transformed into
its acetate using acetic anhydride and pyridine in 93%
yield and the resulting nitro-acetate (2R,3S)-4 on
hydrogenation with 10% Pd/C gave (2R,3S)-5 in 80%
yield and 98% ee. Treatment of (2R,3S)-5 with CrO3 in
glacial acetic acid at 5 ꢁC gave (2R,3S)-6 in 82% yield
and in 96% ee. Reaction of (2R,3S)-6 with benzoyl
chloride in the presence of triethylamine in an aqueous
acetone mixture14 and subsequent hydrolysis of the
acetate group with Et2NMe–H2O15 gave the C-13 taxol
side chain16 (2R,3S)-7 in an overall yield of 33% from
(2R,3S)-3.
In summary, a novel approach to the C-13 side-chain of
taxol has been achieved with excellent optical purity
using Shibasaki’s asymmetric catalyst, La-BINOL
complex.
10. Pianetti, P.; Rollin, P.; Pougny, J. R. Tetrahedron Lett.
1986, 27, 5853–5856.
Acknowledgements
11. Sasai, H.; Itoh, N.; Suzuki, T.; Shibasaki, M. Tetrahedron
Lett. 1993, 34, 855–858.
12. Sasai, H.; Suzuki, T.; Itoh, N.; Shibasaki, M. Tetrahedron
Lett. 1993, 34, 851–854.
13. The enantiomeric excess (ee) was measured byHPLC anal-
ysis carried out using a Waters 510 HPLC system. Chiracel
OD packed in a SS column of 4.6 mm i.d. ·250 m was used.
Isocratic elution was applied with a mobile phase consist-
ing of n-hexane 90% and isopropanol 10% at a flow rate of
0.8 mL/min and a pressure of 125 psi. UV detection at 243 nm.
14. Cardillo, G.; Gentilucci, L.; Tolomelli, A.; Tomasini, C.
J. Org. Chem. 1998, 63, 2351–2353.
The authors gratefullyacknowledge the Director,
Regional Research Laboratory(CSIR), Jorhat, India,
for providing facilities for this work. S.G. thanks CSIR,
New Delhi for the award of Junior Research Fellowship.
References and notes
1. Kingston, D. G. I.; Samaranayake, G.; Ivey, C. A. J. Nat.
Prod. 1990, 3, 1–12.
15. Kunz, H.; Maerz, J. Synlett 1992, 591–592.
20
D
(CHCl3): 3422, 2922, 2868, 1632, 1554, 1496, 1453, 1365,
2. Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.;
McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325–2327.
3. (a) Denis, J.-N.; Greene, A. E.; Serra, A. A.; Luche, M. J.
J. Org. Chem. 1986, 51, 46–50; (b) Cardillo, G.; Gentilucci,
L.; Tolomelli, A.; Tomasini, C. J. Org. Chem. 1998, 63,
2351–2353; (c) Koskinen, A. M. P.; Karvinen, K. E.;
Siirila, J. P. J. Chem. Soc., Chem. Commun. 1994, 21–22;
(d) Barco, A.; Benetti, S.; Risi, D. C.; Pollini, P. G.;
Romagnoli, R.; Zanirato, V. Tetrahedron Lett. 1994, 35,
16. (2R,3S)-3: gum; ½a ꢀ40.3 (c 1, CHCl3); ee: 90%. IR
1114, 736 cmꢀ1
.
1H NMR (300 MHz, CDCl3) d ¼ 7:82
(10H, aromatic), 5.61 (d, J ¼ 9:4 Hz, 1H, CHNO2), 4.51
(m, 1H, CHOH), 4.25 (s, 2H, OCH2Ph), 3.45 (d, J ¼ 4 Hz,
1H, CHaO–), 3.17 (d, J ¼ 4 Hz, 1H, CHbO–), 2.80 (br, 1H,
OH). MS(ESI) m=z ¼ 310 (MþþNa). Anal. Calcd for
C16H17NO4: C, 66.89; H, 5.95; N, 4.88. Found: C, 66.94;
H, 5.89; N, 4.91.