K. Mo, S. B. Kang, Y. Kim, Y. S. Lee, J. W. Lee, G. Keum
FULL PAPER
3215 (NH), 1518, 1658 (C=O) cm–1. Data for lower spot of 8: H
NMR (300 MHz, CDCl3): δ = 7.66–7.32 (m, 10 H), 6.19 (d, J =
9.0 Hz, 1 H), 5.07 (dd, J = 9.3, 3.9 Hz, 1 H), 4.72 (d, J = 12.0 Hz,
1 H), 4.54 (d, J = 3.9 Hz, 1 H), 4.29 (d, J = 12.0 Hz, 1 H), 1.93 (s,
3 H) ppm.
1
Stürmer, T. Zelinski, Angew. Chem. Int. Ed. 2004, 43, 788–824;
Angew. Chem. 2004, 116, 806.
[2]
[3]
a) T. Daußmann, H. G. Hennemann, T. C. Rosen, Chem. Ing.
Tech. 2006, 78, 249–255; b) B. Cornils, W. A. Herrmann, Ap-
plied Homogeneous Catalysis with Organometallic Compounds,
Wiley-VCH, Weinheim, Germany, 2002; c) R. A. Sheldon, Chi-
rotechnology, Marcel Dekker, New York, 1993; d) M. Beller, C.
Bolm, Transition Metals for Organic Synthesis: Building Blocks
and Fine Chemicals, Wiley-VCH, Weinheim, Germany, 1998; e)
R. E. Deasy, A. R. Maquire, Eur. J. Org. Chem. 2014, 3737–
3756.
a) N. K. Modukuru, J. Sukumaran, S. J. Collier, A. S. Chan,
A. Gohel, G. W. Huisman, R. Keledjian, K. Narayanaswamy,
S. J. Novick, S. M. Palanivel, D. Smith, Z. Wei, B. Wong, W. L.
Yeo, D. A. Entwistle, Org. Process Res. Dev. 2014, 18, 810–815;
b) C. P. Marocco, E. V. Davis, J. E. Finnell, P.-H. Nguyen, S. C.
Mateer, I. Ghiviriga, C. W. B. D. Feske, Tetrahedron: Asym-
metry 2011, 22, 1784–1789.
N-[2-(Benzyloxy)-2-phenyl-1-(2H-tetrazol-5-yl)ethyl]acetamide (9):
To a solution of the upper isomer of 8 (36 mg, 0.12 mmol) in water/
2-propanol (2:1, 3 mL) were added sodium azide (15.9 mg,
2.0 equiv.) and zinc bromide (ZnBr2, 3.8 mg, 0.5 equiv.) at room
temperature. The reaction mixture was heated at reflux and stirred
for 48 h. Upon completion, HCl (1 n solution) and ethyl acetate
were added, and the resulting mixture was stirred until the solid
was entirely dissolved. The organic layer was separated, and the
aqueous layer was extracted with ethyl acetate (2ϫ). The combined
organic layers were washed with brine, dried with MgSO4, filtered,
and concentrated under reduced pressure. The residue was purified
by chromatography on a silica gel column (CH2Cl2/MeOH, 30:1–
1:1) to give tetrazole 9 (38 mg, 92%). MS (70 eV): m/z (%) = 338
[4]
[5]
N. Wehofsky, S. Thust, J. Burmeister, S. Klussmann, F. Bor-
dusa, Angew. Chem. Int. Ed. 2003, 42, 677–679; Angew. Chem.
2003, 115, 701.
[M]+, 197, 99, 91 (100), 77, 65, 51. H NMR (300 MHz, CD3OD):
1
a) V. Uppada, S. Bhaduri, S. B. Noronha, Curr. Sci. 2014, 106,
946–957; b) A. Schallmey, P. Dominguez de Maria, P. Bracco,
in: Stereoselective Synthesis of Drugs and Natural Products
(Eds.: V. Andrushko, N. Andrushko), Wiley-Blackwell, Ho-
boken, 2013, vol. 2, p. 1089–1114; c) L. Pollegioni, P. Motta,
G. Molla, Appl. Microbiol. Biotechnol. 2013, 97, 9323–9341.
N. J. Turner, E. O’Reilly, Nat. Chem. Biol. 2013, 9, 285–288.
K. M. Blazewska, T. Gajda, Tetrahedron: Asymmetry 2009, 20,
1337–1361.
δ = 7.38–6.96 (m, 10 H), 5.54 (d, J = 9.0 Hz, 1 H), 4.72 (d, J =
9.0 Hz, 1 H), 4.43 (d, J = 12.0 Hz, 1 H), 4.18 (d, J = 11.4 Hz, 1
H), 1.71 (s, 3 H) ppm. 13C NMR (75 MHz, CD3OD): δ = 172.53,
157.07, 138.62, 129.91, 129.63, 129.34, 128.99, 128.85, 128.55,
128.23, 82.04, 71.73, 50.76, 22.08 ppm. HRMS (FAB): calcd. for
C18H20N5O2 [M + H]+ 338.1617; found 338.1616. IR (KBr): ν =
[6]
[7]
˜
3220 (NH), 1516, 1648 (C=O) cm–1.
N-[2-(Benzyloxy)-1-(5-methyl-1,2,4-oxadiazol-3-yl)-2-phenylethyl]- [8]
acetamide (10): A suspension of nitrile 8 (90 mg, 0.31 mmol), hy-
droxylamine hydrochloride (64 mg, 3.0 equiv.), and potassium
E. Brenna, Synthetic Methods for Biologically Active Molecules,
Wiley-VCH, Weinheim, Germany, 2013.
B. R. Riebel, P. R. Gibbs, W. B. Wellborn, A. S. Bommarius,
[9]
Adv. Synth. Catal. 2003, 345, 707–712.
carbonate (253 mg, 6.0 equiv.) in absolute ethanol (5 mL) was
[10]
a) H. Ankati, D. Zhu, Y. Yang, E. R. Biehl, L. Hua, J. Org.
Chem. 2009, 74, 1658–1662; b) C.-C. Xu, H.-L. Yu, Z.-J.
Zhang, J.-H. Xu, Org. Lett. 2013, 15, 5408–5411; c) R. J. Ham-
mond, B. W. Poston, I. Ghiviriga, B. D. Feske, Tetrahedron
Lett. 2007, 48, 1217–1219.
heated at reflux for 8 h. The reaction mixture was cooled to room
temperature and filtered, and the filtrate was concentrated under
reduced pressure. The resulting amide oxime was dissolved in anhy-
drous tetrahydrofuran (5 mL) that contained powdered molecular
sieves (4 Å, 120 mg), and the mixture was stirred for 30 min. So-
dium hydride (60% dispersion in oil, 18.5 mg prewashed with hex-
ane, 1.5 equiv.) was added, and the mixture was heated at 60 °C for
30 min and then was cooled to room temperature. Ethyl acetate
(60 mL, 2.0 equiv.) was added, and the reaction mixture was heated
at reflux for 1 h and then cooled to room temperature. The mixture
was filtered, and the filtrate was concentrated under reduced pres-
sure to give a residue, which was purified by flash chromatography
on a silica gel column (n-hexane/EtOAc, 4:1) to afford compound
10 (54 mg, 50%). MS (70 eV): m/z (%) = 352 [M]+, 197, 112, 91
[11]
a) Y. Suto, R. Tsuji, M. Kanai, M. Shibasaki, Org. Lett. 2005,
7, 3757–3760; b) S. Mun, J. E. Lee, J. Yun, Org. Lett. 2006, 8,
4887–4889; c) V. Lillo, A. Bonet, E. Fernández, Dalton Trans.
2009, 2899–2908; d) G.-y. Wang, X.-y. Liu, G. Zhao, Synlett
2006, 1150–1154; e) H. Vázquez-Villa, S. Reber, M. A. Ariger,
E. M. Carreira, Angew. Chem. Int. Ed. 2011, 50, 8979–8981;
Angew. Chem. 2011, 123, 9141; f) W. Xiao, R. Jin, T. Cheng,
D. Xia, H. Yao, F. Gao, B. Deng, G. Liu, Chem. Commun.
2012, 48, 11898–11900; g) B. Deng, T. Cheng, M. Wu, J. Wang,
G. Liu, ChemCatChem 2013, 5, 2856–2860; h) T. Hamada, T.
Torii, K. Izawa, T. Ikariya, Tetrahedron 2004, 60, 7411–7417;
i) T. Touge, T. Hakamata, H. Nara, T. Kobayashi, N. Sayo, T.
Saito, Y. Kayaki, T. Ikariya, J. Am. Chem. Soc. 2011, 133,
14960–14963; j) M. Watanabe, K. Murata, T. Ikariya, J. Org.
Chem. 2002, 67, 1712–1715.
a) M. Sakamoto, M. Hamada, T. Higashi, M. Shoji, T. Sugai,
J. Mol. Catal. B: Enzym. 2010, 64, 96–100; b) O. Pàmies, J.-E.
Bäckvall, Adv. Synth. Catal. 2002, 344, 947–952; c) A. Kamal,
G. B. R. Khanna, Tetrahedron: Asymmetry 2002, 13, 2039–
2051.
a) A. J. Smallridge, A. Ten, M. A. Trewhella, Tetrahedron Lett.
1998, 39, 5121–5124; b) V. Gotor, J. R. Dehli, F. Rebolledo, J.
Chem. Soc. Perkin Trans. 1 2000, 307–309; c) J. R. Dehli, V.
Gotor, Tetrahedron: Asymmetry 2001, 12, 1485–1492.
a) P. Florey, A. J. Smallridge, A. Ten, M. A. Trewhella, Org.
Lett. 1999, 1, 1879–1880; b) J. R. Dehli, V. Gotor, Tetrahedron:
Asymmetry 2000, 11, 3693–3700.
1
(100), 77, 65, 51. H NMR (300 MHz, CDCl3): δ = 7.39–7.09 (m,
10 H), 6.41 (d, J = 9.0 Hz, 1 H), 5.40 (dd, J = 9.3, 2.7 Hz, 1 H),
4.97 (d, J = 2.7 Hz, 1 H), 4.59 (d, J = 11.4 Hz, 1 H), 4.22 (d, J =
12.0 Hz, 1 H), 2.52 (s, 3 H), 1.95 (s, 3 H) ppm. 13C NMR (75 MHz,
CDCl3): δ = 176.57, 169.77, 169.30, 137.27, 128.57, 128.41, 128.24,
127.90, 127.83, 126.72, 79.82, 71.11, 52.29, 29.65, 22.92, 12.31 ppm.
HRMS (FAB): calcd. for C20H22N3O3 [M + H]+ 352.1661; found
[12]
[13]
352.1656. IR (CCl ): ν = 3227 (NH), 1514, 1650 (C=O) cm–1.
˜
4
Acknowledgments
This work was supported by the Korea Institute of Science and
Technology Institutional Program (grant numbers 2E25023,
2Z03983).
[14]
[15]
a) D. Zhu, H. Ankati, C. Mukherjee, Y. Yang, E. R. Biehl, L.
Hua, Org. Lett. 2007, 9, 2561–2563; b) A. S. Rowan, T. S.
Moody, R. M. Howard, T. J. Underwood, I. R. Miskelly, Y. He,
B. Wang, Tetrahedron: Asymmetry 2013, 24, 1369–1381.
[1] a) R. Csuk, B. I. Glaenzer, Chem. Rev. 1991, 91, 49–97; b) M.
Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R.
1142
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 1137–1143