Page 5 of 6
Organic & Biomolecular Chemistry
Please do not adjust margins
Journal Name
ARTICLE
Acknowledgements
DOI: 10.1039/C6OB02250B
Nat. Prod. Rep., 1999, 16, 75–96; (e) W. D. MacRae and G. H.
N. Towers, Phytochem., 1984, 23, 1207–1220.
Sertraline: D. Murdoch and D. McTavish, Drugs, 1992, 44,
604–624.
We thank the College of Liberal Arts and Sciences and the
Department of Chemistry at the University of Florida for
start-up funds.
9
10 Ecopipam: E. F. McCance-Katz, T. A. Kosten and T. R. Kosten,
Psychopharmacol. (Berlin, Ger., 2001, 155, 327–329; M.
Haney, A. S. Ward, R. W. Foltin and M. W. Fischman,
Psychopharmacol. 2001, 155, 330–337.
Notes and references
11 Lasofoxifene: S. Mocellin, P. Pilati, M. Briarava and D. Nitti, J.
Natl. Cancer Inst., 2016, 108; djv318; L. Gennari, D. Merlotti,
G. Martini and R. Nuti, Expert Opin. Investig. Drugs, 2006, 15,
1091–1103.
12 Naphthalene lignans: (a) D. L. Minor, S. D. Wyrick, P. S.
Charifson, V. J. Watts, D. E. Nichols and R. B. Mailman, J.
Med. Chem., 1994, 37, 4317–4328; (b) P. Abrams and K.-E.
Andersson, BJU Int., 2007, 100, 987–1006.
1
(a) G. Jones, Org. React., 1967, 15, 204–599. (b) E.
Knoevenagel, Berichte der Dtsch. Chem. Gesellschaft, 1898,
31, 2596–2619. (c) A. C. Cope, J. Am. Chem. Soc., 1937, 59,
2327–2330.
2
Knoevenagel adducts can undergo deconjugative alkylation:
(a) W.-B. Liu, N. Okamoto, E. J. Alexy, A. Y. Hong, K. Tran and
B. M. Stoltz, J. Am. Chem. Soc., 2016, 138, 5234; (b) S. R.
Waetzig, D. K. Rayabharapu, J. D. Weaver and J. A. Tunge,
Angew. Chem. Int. Ed., 2006, 45, 4977–4980; (c) M. Bell, K.
Frisch and K. A. Jørgensen, J. Org. Chem., 2006, 71, 5407–
5410; (d) Y. Sato, Y. Oonishi and M. Mori, J. Org. Chem.,
2003, 68, 9858–9860; (e) H. Nakamura, H. Iwama, M. Ito and
Y. Yamamoto, J. Am. Chem. Soc., 1999, 121, 10850–10851; (f)
H. Karlsen, P. H. Songe, L. K. Sunsby, L. C. Hagen, P. Kolsaker
and C. Romming, J. Chem. Soc. Perkin Trans., 2001, 497–507;
(g) R. B. Grossman and M. A. Varner, J. Org. Chem., 1997, 62,
5235–5237; (h) A. C. Cope and K. E. Hoyle, J. Am. Chem. Soc.,
1941, 63, 733–736.
Knoevenagel adducts can undergo γ-alkylation, commonly
with Michael acceptors: (a) T. B. Poulsen, C. Alemparte and
K. A. Jørgensen, J. Am. Chem. Soc., 2005, 127, 11614–11615.
(b) D. Xue, Y.-C. Chen, Q.-W. Wang, L.-F. Cun, J. Zhu and J.-G.
Deng, Org. Lett., 2005, 7, 5293–5296. (c) T.-Y. Liu, H.-L. Cui, J.
Long, B.-J. Li, Y. Wu, L.-S. Ding and Y.-C. Chen, J. Am. Chem.
Soc., 2007, 129, 1878–1879. (d) T. B. Poulsen, M. Bell and K.
A. Jørgensen, Org. Biomol. Chem., 2006, 4, 63–70. (e) B.
Niess and K. A. Joergensen, Chem. Commun., 2007, 1620–
1622. (f) J.-W. Xie, L. Yue, D. Xue, X.-L. Ma, Y.-C. Chen, Y. Wu,
J. Zhu and J.-G. Deng, Chem. Commun., 2006, 1563–1565. (g)
J.-W. Xie, W. Chen, R. Li, M. Zeng, W. Du, L. Yue, Y.-C. Chen,
Y. Wu, J. Zhu and J.-G. Deng, Angew. Chem. Int. Ed., 2007, 46,
389–392. (h) J. Aleman, C. B. Jacobsen, K. Frisch, J. Overgaard
and K. A. Jorgensen, Chem. Commun., 2008, 632–634. (i) J.
Lu, F. Liu and T.-P. Loh, Adv. Synth. Cat., 2008, 350, 1781–
1784. (j) X.-L. Zhu, W.-J. He, L.-L. Yu, C.-W. Cai, Z.-L. Zuo, D.-B.
Qin, Q.-Z. Liu and L.-H. Jing, Adv. Synth. Cat., 2012, 354,
2965–2970, S2965/1–S2965/61
We are exploring Knoevenagel adducts as reagents for
multifunctionalization: P. Vertesaljai, P. V Navaratne and A. J.
Grenning, Angew. Chem. Int. Ed., 2016, 55, 317–320.
For examples of 6-endo-Heck cyclization see: (a) X. Dong, Y.
Han, F. Yan, Q. Liu, P. Wang, K. Chen, Y. Li, Z. Zhao, Y. Dong
and H. Liu, Org. Lett., 2016, 18, 3774–3777; (b) J. M.
Aurrecoechea, C. A. Coy and O. J. Patino, J. Org. Chem., 2008,
73, 5194–5197; (c) J. W. Dankwardt and L. A. Flippin, J. Org.
Chem., 1995, 60, 2312–2313. (d) H. Ishibashi, K. Ito, T.
Hirano, M. Tabuchi and M. Ikeda, Tetrahedron, 1993, 49,
4173–4182.
For a review of intramolecular Heck cyclization see: (a) J. T.
Link, Org. React., 2002, 60, 157–561; (b) A. B. Dounay and L.
E. Overman, Chem. Rev., 2003, 103, 2945–2963.
For other examples of tetralin synthesis by 6-endo-Heck
cyclization see: (a) D. Stadler and T. Bach, Angew. Chem. Int.
Ed., 2008, 47, 7557–7559. (b) J. J. Kennedy-Smith, L. A. Young
and F. D. Toste, Org. Lett., 2004, 6, 1325–1327.
13 For a review of reductive decyanation see: J.-M. Mattalia, C.
Marchi-Delapierre, H. Hazimeh and M. Chanon, Arkivoc,
2006, 90–118.
14 For select examples of reductive decyanation see: (a) J. T.
Reeves, C. A. Malapit, F. G. Buono, K. P. Sidhu, M. A. Marsini,
C. A. Sader, K. R. Fandrick, C. A. Busacca and C. H.
Senanayake, J. Am. Chem. Soc., 2015, 137, 9481–9488. (b) E.
Doni and J. A. Murphy, Org. Chem. Front., 2014, 1, 1072–
1076. (c) J.-P. Tsao, T.-Y. Tsai, I.-C. Chen, H.-J. Liu, J.-L. Zhu
and S.-W. Tsao, Synthesis 2010, 4242–4250; (d) S. D.
Rychnovsky and L. R. Takaoka, Angew. Chem. Int. Ed., 2003,
42, 818–820; (e) H.-Y. Kang, W. Sang Hong, Y. Seo Cho and H.
Yeong Koh, Tetrahedron Lett., 1995, 36, 7661–7664. (f) D.
Guijarro and M. Yus, Tetrahedron, 1994, 50, 3447–3452. (g)
D. P. Curran and C. M. Seong, Synlett, 1991, 107–108;
15 For a review of arene synthesis by dehydrocyanation see: N.
Otto and T. Opatz, Chem. – A Eur. J., 2014, 20, 13064–13077.
16 For select examples of dehydrocyanation see: (a) M. M.
Nebe, M. Kucukdisli and T. Opatz, J. Org. Chem., 2016, 81,
4112–4121. (b) A.-K. Bachon and T. Opatz, J. Org. Chem.,
2016, 81, 1858–1869. (c) N. A. Mir, S. Choudhary, P.
Ramaraju, D. Singh and I. Kumar, RSC Adv., 2016, 6, 39741–
39749. (c) G. Lahm, J.-G. Deichmann, A. L. Rauen and T.
Opatz, J. Org. Chem., 2015, 80, 2010–2016. (h) D. M. Gale
and S. C. Cherkofsky, J. Org. Chem., 1973, 38, 475–478. (i) C.
R. Hauser and W. R. Brasen, J. Am. Chem. Soc., 1956, 78, 82–
83.
17 (a) L. H. Jones, N. W. Summerhill, N. A. Swain and J. E. Mills,
Medchemcomm, 2010, 1, 309–318; (b) F. F. Fleming, L. Yao,
P. C. Ravikumar, L. Funk and B. C. Shook, J. Med. Chem.,
2010, 53, 7902–7917.
18 For reviews of aryl tetralin synthesis see: (a) J. D. Sellars and
P. G. Steel, European J. Org. Chem., 2007, 3815–3828; (b) J.-
S. Sun, H. Liu, X.-H. Guo and J.-X. Liao, Org. Biomol. Chem.,
2016, 14, 1188–1200.
19 For select examples of aryl tetralin synthesis by
intramolecular Friedel-Crafts alkylation see: (a) S. Hajra, B.
Maji and D. Mal, Adv. Synth. Catal., 2009, 351, 859–864; (b)
B. L. Yvon, P. K. Datta, T. N. Le and J. L. Charlton, Synthesis
2001, 1556–1560; (c) J. E. Cochran and A. Padwa, J. Org.
Chem., 1995, 60, 3938–3939; (d) A. Pelter, R. S. Ward and R.
R. Rao, Tetrahedron, 1985, 41, 2933–2938; (e) A. S. Kende, L.
S. Liebeskind, J. E. Mills, P. S. Rutledge and D. P. Curran, J.
Am. Chem. Soc., 1977, 99, 7082–7083.
20 For select examples of aryl tetralin synthesis by a Diels-Alder-
centered strategy see: (a) M. Jinno, Y. Kitano, M. Tada and K.
Chiba, Org. Lett., 1999, 1, 435–437; (b) T. Kuroda, M.
Takahashi, K. Kondo and T. Iwasaki, J. Org. Chem., 1996, 61,
9560–9563; (c) D. M. Coltart and J. L. Charlton, Can. J. Chem.,
1996, 74, 88–94; (d) S. P. Maddaford and J. L. Charlton, J.
3
4
5
6
7
8
Bioactive tetralin lignans: (a) M. Saleem, H. J. Kim, M. S. Ali
and Y. S. Lee, Nat. Prod. Rep., 2005, 22, 696–716; (b) S.
Apers, A. Vlietinck and L. Pieters, Phytochem. Rev., 2004, 2,
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins