Please do not adjust margins
Green Chemistry
Page 6 of 7
ARTICLE
Journal Name
Environmental aspects of the reaction
5
1529.
DOI: 10.1039/D0GC03081C
The deuterodebromination reaction can be considered
environmentally benign. The solvent, acetonitrile-d3, can be
easily regenerated and corresponds green chemistry principles.
There is a limited amount of data about toxicity of photocatalyst
P2, but a functionalized dicyanoantracene compound exhibited
very low in vitro cytotoxicity.37 The reducing agent 2 is reported
to have quite high LD50 of 97 mg/kg in mice,38 but it becomes
converted into salt [3]Br with around 50% recovery ability.
By implementation of recovery procedures, the toxic waste of
the reaction can be limited to minimum amounts.
6
S. Tittebrandt, M. Edelson-Averbukh, B. Spengler and W. D.
Lehmann, Angew. Chemie Int. Ed., 2013, 52, 8973–8975.
E. M. Russak and E. M. Bednarczyk, Ann. Pharmacother.,
2019, 53, 211–216.
G. S. Timmins, Expert Opin. Ther. Pat., 2017, 27, 1353–
1361.
S. Cargnin, M. Serafini and T. Pirali, Future Med. Chem.,
2019, 11, 2039–2042.
M. Hatano, T. Nishimura and H. Yorimitsu, Org. Lett., 2016,
18, 3674–3677.
J.-F. Li, Z.-Z. Wei, Y.-Q. Wang and M. Ye, Green Chem.,
2017, 19, 4498–4502.
A. Seoane, N. Casanova, N. Quiñones, J. L. Mascareñas and
M. Gulías, J. Am. Chem. Soc., 2014, 136, 7607–7610.
T. Zhu, Z. Li, F. Xiao and W.-L. Duan, Tetrahedron Lett.,
2018, 59, 3238–3241.
P. J. Smith, D. A. J. Crowe and K. C. Westaway, Can. J.
Chem., 2001, 79, 1145–1152.
R. Robiette and J. Pospíšil, European J. Org. Chem., 2013,
2013, 836–840.
S. M. Korneev and D. E. Kaufmann, Synthesis (Stuttg).,
2002, 2002, 491–496.
X. Zhang, Q. Chen, R. Song, J. Xu, W. Tian, S. Li, Z. Jin and Y.
R. Chi, ACS Catal., 2020, 10, 5475–5482.
X.-Y. Chen, L.-H. Sun and S. Ye, Chem. - A Eur. J., 2013, 19,
4441–4445.
J. Wu, C. Zhao and J. Wang, J. Am. Chem. Soc., 2016, 138,
4706–4709.
X.-S. Li, L.-L. Zhao, X.-K. Wang, L. Cao, X.-Q. Shi, R. Zhang
and J. Qi, Org. Lett., 2017, 19, 3943–3946.
M. Kuriyama, G. Yano, H. Kiba, T. Morimoto, K. Yamamoto,
Y. Demizu and O. Onomura, Org. Process Res. Dev., 2019,
23, 1552–1557.
I. Iavicoli, L. Fontana and A. Bergamaschi, in Encyclopedia
of Environmental Health, Elsevier, 2011, pp. 307–314.
J. Kielhorn, C. Melber, D. Keller and I. Mangelsdorf, Int. J.
Hyg. Environ. Health, 2002, 205, 417–432.
Guideline for elemental impurities Q3D (R1) by European
Medicines Agency.
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Synthesis of bromoalkenes
The starting bromoalkenes can be prepared by conventional
methods from appropriate alkenes. We demonstrated this
possibility on all derivatives with use of methods published in
literature.39–44 Only the derivatives F-Br and G-Br were not
possible to get in sufficient yield or purity and were synthesized
via substitution reactions (see SI for details).
Conclusions
A
new metal-free method for light-mediated reductive
debromination of phenylvinyl derivatives with the use of
(poly)deuterated benzimidazoline derivatives has been
developed. The reaction is possible to perform efficiently with
the simple and cheap equipment. It allows the synthesis of
deuterated derivatives of various substitution patterns, usually
with excellent conversion and very high isotopic yield. The
reducing agent can be regenerated with its recovery up to 50%.
For some substrate types, it is possible to implement a
sequential bromination-deuterodebromination process. The
developed methodology thus offers a new environmentally
benign possibility of Br/D or H/D exchange on a double bond
without any special instrumental equipment.
22
23
24
Conflicts of interest
There are no conflicts to declare.
25
26
A. Jayaraman and S. Lee, Org. Lett., 2019, 21, 7923–7927.
J. D. Nguyen, E. M. D’Amato, J. M. R. Narayanam and C. R.
J. Stephenson, Nat. Chem., 2012, 4, 854–859.
E. H. Discekici, N. J. Treat, S. O. Poelma, K. M. Mattson, Z.
M. Hudson, Y. Luo, C. J. Hawker and J. R. de Alaniz, Chem.
Commun., 2015, 51, 11705–11708.
M. Neumeier, D. Sampedro, M. Májek, V. A. de la Peña
O’Shea, A. Jacobi von Wangelin and R. Pérez-Ruiz, Chem. -
A Eur. J., 2018, 24, 105–108.
I. Ghosh and B. König, Angew. Chemie - Int. Ed., 2016, 55,
7676–7679.
K. Kunnen, G. Nikonov and L. Yunnikova, in Encyclopedia of
Reagents for Organic Synthesis, John Wiley & Sons, Ltd,
Chichester, UK, 2014, pp. 1–3.
Acknowledgements
This work was supported by the Czech Ministry of Education,
Youth, and Sports (project IGA_PrF_2020_012).
27
28
Notes and references
1
2
3
4
A. Kohen and H. H. Limbach, Isotope effects in chemistry
and biology, CRC Press, 1st edn., 2005.
E. Voutyritsa and C. G. Kokotos, Angew. Chemie Int. Ed.,
2020, 59, 1735–1741.
E. Voutyritsa, A. Theodorou, M. G. Kokotou and C. G.
Kokotos, Green Chem., 2017, 19, 1291–1298.
F. W. McLafferty and F. Turecek, Interpretation of Mass-
Spectra, Univ. Science Books, Sausalito, CA, USA, 4th edn.,
1993.
29
30
31
E. Hasegawa, T. Ohta, S. Tsuji, K. Mori, K. Uchida, T. Miura,
T. Ikoma, E. Tayama, H. Iwamoto, S. Y. Takizawa and S.
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins