drawbacks such as necessity of resolution of the chiral
intermediates,6e use of expensive nonnaturally occurring
D-amino acids,6g too many synthetic steps, and/or low
overall yields.
A Con cise Asym m etr ic Syn th esis of
(2S,3S,7S)-3,7-Dim eth ylp en ta d eca n -2-yl
Aceta te a n d P r op ion a te, th e Sex
P h er om on es of P in e Sa w flies
Pei-Qiang Huang,* Hong-Qiao Lan, Xiao Zheng, and
Yuan-Ping Ruan
Department of Chemistry and The Key Laboratory for
Chemical Biology of Fujian Province, Xiamen University,
Xiamen, Fujian 361005, P. R. China
pqhuang@xmu.edu.cn
In connection with our interests in developing cheap
and easily available (S)-malic acid as a chiral template
for the asymmetric syntheses of bioactive molecules,8 we
now report a new approach to (2S,3S,7S)-1 and its esters.
Our approach to (2S,3S,7S)-1 is depicted retrosyntheti-
cally in Scheme 1. The key to this approach was the
synthesis of 6 and 7 starting from (S)-malic acid (8),
which required an inversion of configuration at the chiral
center of (S)-malic acid (8).
Received February 4, 2004
Abstr a ct: (2S,3S,7S)-3,7-Dimethylpentadecan-2-yl acetate
(2) and its propionate analogue (3) are the main sex
pheromones of all Neodiprion species and Diprion similes,
respectively. Starting from (S)-malic acid and employing a
highly chemo-, regio-, and stereoselective tandem ester
reduction-epoxide formation-reductive epoxide-opening
reaction protocol, an efficient total synthesis of (2S,3S,7S)-2
and -3 is reported herein.
Although a stepwise approach could be considered for
the conversion of (S)-malate 9 and (2S,3R)-3-methyl-
malate 17 to 6 and 7, respectively,9 we were interested
in exploring a more efficient transformation based on an
one-pot reaction. To this end, known dimethyl (S)-malate
(9),10 easily available from (S)-malic acid 8 in 98% yield,
was treated with tosyl chloride-pyridine system to afford
(S)-10 in 97% yield (Scheme 2). Heating a suspension of
(S)-10 with 6 molar equiv of lithium aluminum hydride
in THF afforded (+)-1,3-butanediol (11, yield 55%) and
1,4-butanediol (yield 15%). Comparing the optical rota-
Pine sawflies (Hymenoptera: Diprionidae) are common
insects widely distributed in the coniferous forests of
Europe, Asia, and North American continents. They are
considered to be severe pests on conifers. Since the
pioneering work of Coppel, J ewett and co-workers,1,2 it
is known that the sex pheromones of several species of
pine sawflies share a common alcohol moiety, namely 3,7-
dimethylpentadecan-2-ol 1; Neodiprion lecontei and N.
sertifer uses acetate 2 as the major component of their
pheromones, whereas Diprion similis uses propionate 3.2
Later studies revealed that the esters of the (2S,3S,7S)-
3,7-dimethyl-2-pentadecanol (1) were the most active
stereoisomers for all Neodiprion species.3 Up to date, a
number of methods4-6 have been developed for the
syntheses of stereoisomers7 and homologous7 of 1 in view
of developing selective methods for monitoring and
controlling the populations of these insects. However,
only four asymmetric syntheses of (2S,3S,7S)-1 have been
reported.6b-i Most of the reported methods suffer from
tion of the diol (+)-11 [[R]20 +30.0 (c 1.0, EtOH)] with
D
that of known (S)-enantiomer (+)-11 [[R]20D +29.0 (c 1.0,
(6) For the syntheses of optically active 1, see: (a) Mugnusson, G.
Tetrahedron 1978, 34, 1385. (b) Mori, K.; Tamada, S. Tetrahedron Lett.
1978, 10, 901. (c) Mori, K.; Tamada, S. Tetrahedron 1979, 35, 1279.
(d) Bystro¨m, S.; Ho¨gberg, H. E.; Norin, T. Tetrahedron 1981, 37, 2249.
(e) Kikukawa, T.; Imaida, M.; Tai, A. Bull. Chem. Soc. J pn. 1984, 57,
1954. (f) Itoh, T.; Yonekawa, Y.; Sato, T.; Fujisawa, T. Tetrahedron
Lett. 1986, 27, 5405. (g) Larcheveˆque, M.; Sanner, C. Tetrahedron 1988,
44, 6407. (h) ref 3a. (i) Ho¨gberg, H. E.; Hedenstro¨m, E.; Wassgren, A.
B.; Hjalmarsson, M.; Bergstro¨m, G.; Lo¨fqvist, J .; Norin, T. Tetrahedron
1990, 46, 3007.
(7) For some syntheses of homologous and diastereomers of 1, see:
(a) Kikukawa, T.; Imaida, M.; Tai, A. Chem. Lett. 1982, 1799. (b) Tai,
A.; Sugimura, T.; Kikukawa, T.; Naito, C.; Nishimoto, Y.; Morimoto,
N. Biosci., Biotechnol., Biochem. 1992, 56, 1711. (c) Hedenstro¨m, E.;
Hogberg, H. E.; Wassgren, A. B.; Bergstrom, G.; Lofqvist, J .; Hansson,
B.; Anderbrant, O. Tetrahedron 1992, 48, 3139. (d) Tai, A.; Higashiura,
Y.; Kakizaiki, M.; Naito, T.; Tanaka, K.; Fujita, M.; Sugimura, T.; Hara,
H.; Hayshi, N. Biosci., Biotechnol., Biochem. 1998, 62, 607. (e) Moreira,
J . A.; Correˆa, A. G. J . Braz. Chem. Soc. 2000, 11, 614. (f) Ebert, S.;
Krause, N. Eur. J . Org. Chem. 2001, 3831. (g) Hedenstro¨m, E.; Edlund,
H.; Lund, S.; Abersten, M.; Persson, D. J . Chem. Soc., Perkin Trans.
1 2002, 1810. (h) Tai, A.; Tanaka, K.; Fujita, M.; Sugimura, T.;
Higashiura, Y. Kasashi, M.; Hara, H.; Naito, T. Bull. Chem. Soc. J pn.
2002, 75, 111.
(8) (a) Huang, P.-Q.; Wang, S. L.; Zheng, H.; Fei, X. S. Tetrahedron
Lett. 1997, 38, 271. (b) He, B.-Y.; Wu, T.-J .; Yu, X.-Y.; Huang, P.-Q.
Tetrahedron: Asymmetry 2003, 14, 2101. (c) Huang, P.-Q.; Meng, W.-
H. Lett. Org. Chem. 2004 1, 99.
(9) For related transformations, see: (a) Forster, R. C.; Owen, L. N.
J . Chem. Soc., Perkin Trans. 1 1978, 822. (b) Plattner, J . J .; Rapoport,
H. J . Am. Chem. Soc. 1971, 93, 1758.
(1) Coppel, H. C.; Casida, J . E.; Dauterman, W. C. Ann. Entomol.
Soc. Am. 1960, 53, 510.
(2) J ewett, D. M.; Matsumura, F.; Coppel, H. C. Science 1976, 192,
51.
(3) (a) Tai, A.; Morimoto, N.; Yoshikawa, M.; Uehara, K.; Sugimura,
T.; Kikukawa, T. Agric. Biol. Chem. 1990, 54, 1753. (b) Hedenstro¨m,
E.; Ho¨gberg, H. E.; Wassgren, A. B.; Bergstro¨m, G.; Lo¨fqvist, J .;
Hansson, B. S.; Anderbrant, O. Tetrahedron 1992, 48, 3139.
(4) For reviews on the syntheses of 1 and related compounds, see:
(a) Mori, K. In The Total Synthesis of Natural Products; ApSimon, J .,
Ed.; J ohn Wiley: New York, 1981; Vol. 4, pp 123-129. (b) Mori, K. In
The Total Synthesis of Natural Products; ApSimon, J ., Ed.; J ohn
Wiley: New York, 1992; Vol. 9, pp 122-129.
(5) For racemic syntheses of 1, see: (a) Reference 2. (b) Magnusson,
G. Tetrahedron Lett. 1977, 31, 2713. (c) Kocienski, P. J .; Ansell, J . M.
J . Org. Chem. 1977, 42, 1102. (d) Place, P.; Roumestant, M. L.; Gore,
J . J . Org. Chem. 1978, 43, 1001. (e) Baker, R.; Winton, P. M.
Tetrahedron Lett. 1980, 21, 1175. (f) Kallmerten, J .; Balestra, M. J .
Org. Chem. 1986, 51, 2855. (g) Gould, T. J .; Balestra, M.; Wittman,
M. D.; Gary, J . A.; Rossano, L. T.; Kallmerten, J . J . Org. Chem. 1987,
52, 3889. (h) Hedenstro¨m, E.; Ho¨gberg, H. E. Tetrahedron 1994, 50,
5225.
(10) (a) Mori, K.; Ikunaka, M. Tetrahedron 1984, 40, 3471. (b)
Axelsson, B. S.; O’Toole, K. J .; Spencer, P. A.; Young, D. U. J . Chem.
Soc., Perkin Trans. 1 1994, 807.
10.1021/jo0497961 CCC: $27.50 © 2004 American Chemical Society
Published on Web 04/27/2004
3964
J . Org. Chem. 2004, 69, 3964-3967