3998
K. Afarinkia et al. / Tetrahedron Letters 45 (2004) 3995–3998
three could be confirmed by X-ray crystallography. The
configurations of all three of the major cycloadducts
from the reaction between 7 and these three dienophiles
were found to be 8-endo. In other words, cycloadditions
between 7 and electron deficient, electron neutral or
electron rich dienophiles (Scheme 5, R ¼ CN,
4-BrC6H4, and OBu) all afforded selectively the same
configuration of cycloadduct.
References and notes
1. Buonora, P.; Olsen, J.-C.; Oh, T. Tetrahedron 2001, 57,
6099.
2. (a) Boger, D. L. Tetrahedron 1983, 39, 2869; (b) Boger,
D. L. Chem. Rev. 1986, 86, 781.
3. (a) Sauer, J.; Heldmann, D. K. Tetrahedron Lett. 1998, 39,
2549; (b) Wan, Z. K.; Snyder, J. K. Tetrahedron Lett.
1998, 39, 2487; (c) Rykowski, A.; Branowska, D.; Kielak,
J. Tetrahedron Lett. 2000, 41, 3657.
The results for the cycloadditions of 2(H)-1,4-oxazin-2-
ones 3–5 and 7 demonstrate that the ambident nature of 1
is not unique and that the introduction of methyl and
phenyl substituents to the 3- and 6-positions of the 2(H)-
1,4-oxazin-2-one nucleus affords ambident azadienes
which react with both electron deficient dienophiles (e.g.,
methyl acrylate 8, and acrylonitrile 9) and electron rich
dienophiles (e.g., butyl vinyl ether 12), as well as weakly
activated dienophiles (e.g., 4-bromostyrene 10, and vinyl
acetate 11). Furthermore, the cycloadditions can be very
selective, but the selectivity depends on the substituents
present on the oxazinone ring. For example, in most
cases, oxazinone 7 affords only one major cycloadduct.
Finally and most importantly, the cycloadditions of these
2(H)-1,4-oxazin-2-ones always afford an 8-endo cyclo-
adduct either exclusively or as the major product
regardless of the electronic demand of the dienophile. This
configuration is similar to the major one obtained in the
cycloadditions of 3- and 5-bromo-2(H)-pyran-2-ones, the
regio- and stereoselectivity of which are also independent
of the electronic demand of the dienophile. Therefore,
there appears to be a strong parallel between the cyclo-
addition chemistry of 3- and 5-bromo-2(H)-pyran-2-ones
and 5-chloro-2(H)-1,4-oxazinones.
4. (a) Ohba, M.; Izuta, R.; Shimizu, E. Tetrahedron Lett.
2000, 41, 10251; (b) Ohba, M.; Izuta, R. Heterocycles
2001, 55, 823.
5. Kopka, I. E. Tetrahedron Lett. 1988, 29, 3768.
6. Brown, D. J.; England, B. T. Aust. J. Chem. 1970, 23, 625.
7. For example see: Baydar, A. E.; Boyd, G. V.; Lindley, P.
F.; Watson, F. J. Chem. Soc. Chem. Commun. 1979, 178.
8. Boger, D. L.; Wysocki, R. J., Jr. J. Org. Chem. 1989, 54,
714.
9. (a) Fannes, C.; Meerpool, L.; Hoornaert, G. J. Synthesis
1992, 705; (b) De Borggraeve, W.; Rombouts, F.; Van der
Eycken, E.; Hoornaert, G. J. Synlett 2000, 713; (c)
Vanaken, K. J.; Lux, G. M.; Deroover, G. G.; Meerpoel,
L.; Hoornaert, G. J. Tetrahedron 1994, 50, 5211; (d)
Tutonda, M. G.; Vandenberghe, S. M.; Van Aken, K. J.;
Hoornaert, G. J. J. Org. Chem. 1992, 57, 2935; (e)
Vanaken, K. J.; Lux, G. M.; Deroover, G. G.; Meerpoel,
L.; Hoornaert, G. J. Tetrahedron 1996, 52, 2591.
10. Afarinkia, K.; Bahar, A.; Neuss, J. Synlett 2003, 2341.
11. (a) Posner, G. H.; Nelson, T. D.; Kinter, C. M.; Afarinkia,
K. Tetrahedron Lett. 1991, 32, 5295; (b) Afarinkia, K.;
Posner, G. H. Tetrahedron Lett. 1992, 33, 7839; (c)
Afarinkia, K.; Daly, N. T.; Gomez-Farnos, S.; Joshi, S.
Tetrahedron Lett. 1997, 38, 2369; (d) For reviews see:
Afarinkia, K.; Nelson, T. D.; Vinader, M. V.; Posner, G.
H. Tetrahedron 1992, 48, 9111; (e) Woodward, B. T.;
Posner, G. H. Adv. Cycloaddition 1999, 5, 47.
12. (a) Cho, C.-G.; Park, J.-S.; Jung, I.-H.; Lee, H. Tetra-
hedron Lett. 2001, 42, 1065; (b) Cho, C.-G.; Kim, Y.-W.;
Lim, Y.-K.; Park, J.-S.; Lee, H.; Koo, S. J. Org. Chem.
2002, 67, 290.
13. Afarinkia, K.; Mahmood, F. Tetrahedron 1999, 55, 3129.
14. Meerpool, L.; Hoornaert, G. J. Synthesis 1990, 905.
15. Tomisawa, H.; Fujita, R.; Noguchi, K.; Hongo, H. Chem.
Pharm. Bull. 1970, 18, 941.
Acknowledgements
We thank Oxford GlycoSciences (UK) Ltd (now part of
Celltech R&D Ltd) for financial support (A.B.), and Dr.
Jon W. Steed (KCL) and Dr. Andrew J. P. White
(Imperial College) for expert X-ray analysis.