Table 1 Asymmetric hydrogenation of olefins
H2
(atm)
%
Run R1
R2
R3
Catalyst Yield
% ee
1
2
3
4
5
6
7
H
H
Me
Me
H
CH2CO2H
CH2CO2H
CH2CO2Me
CH2CO2Me
NHCOCH3 Ph
NHCOCH3 Ph
NHCOCH3 Ph
H
H
H
H
1
3.5
1
20
1
A
A
A
A
A
A
B
> 99
89
> 99
15
> 99
85
50
64 (S)
59 (S)
41 (S)
31 (S)
30 (R)
36 (R)
73 (R)
H
H
3.5
3.5
Reaction conditions: 0.01 mmol catalyst, 1 mmol substrate in MeOH (15
mL) at room temperature. Catalyst A = [Rh(COD)2]BF4/ddppm, B =
[Ru(p-cymene)Cl2]2/ddppm. %ee values were measured by chiral HPLC
using a Chiralcel OD column and hexane/IPA as the eluent.
Fig. 1 ORTEP ellipsoid plot at 30% probability of the molecular structure
of 2. The bromide counter ions and solvent molecules have been omitted for
clarity. Selected distances (Å): P(1)–O(1) 1.577(4), P(2)–O(2) 1.572(4),
O(1)–C(1) 1.460(6), O(2)–C(6) 1.462(6).
To conclude, we have prepared a new chiral chelating diph-
osphine ligand with a rigid backbone conformation in two steps
from readily available starting materials. Compared to other known
chiral diphosphines such as BINAP, ddppm synthesis involves a
simpler synthetic methodology that does not require a resolution
step.11 Further work that explores possible catalytic applications of
ddppm and its derivatives is currently underway.
A.D. thanks Synetix for lectureship funding, Johnson Matthey
for a precious metals loan and the EPSRC mass spectrometry
service.
Notes and references
‡ Crystal data for ddppm: C30H28O2P2, M
= 482.46, orthorombic,
P212121, a = 11.5522(9), b = 14.0034(11), c = 15.4518(14) Å3, V =
2499.6(4) Å3, Z = 4, Dc = 1.282 g cm23, m(Mo–Ka) = 0.71073 Å, T =
150(2) K, 24363 reflections collected, 4278 independent reflections [R(int)
= 0.2142], F2 refinement, R1 = 0.0731, wR2 = 0.1400 for [I > 2s(I)], 308
parameters. Flack parameter = [0.14(19)]. For 2·3CH4O: C45H50O7P2Br2,
M = 924.61, Monoclinic, P21, a = 9.3604(2), b = 23.4811(5), c =
9.7168(2) Å3, b = 95.4883(7)°, V = 2125.89(8) Å3, Z = 2, Dc = 1.444 g
cm23, m(Mo–Ka) = 0.71073 Å, T = 150(2) K, 16969 reflections collected,
9299 independent reflections [R(int)
= =
0.0766], F2 refinement, R1
0.0609, wR2 = 0.1466 for [I > 2s(I)], 508 parameters. The absolute
structure was correctly indicated by the Flack parameter being zero within
experimental error [0.020(9)]. For 4·C2H3N: C36H37BF4N3O2P2Rh, M =
795.35, Monoclinic, P21, a = 10.2793(2), b = 15.1367(4), c = 11.5954(4)
Å3, b = 100.7005(12)°, V = 1772.81(8) Å3, Z = 2, Dc = 1.490 g cm23
,
m(Mo–Ka) = 0.71073 Å, T = 150(2) K, 16148 reflections collected, 6563
independent reflections [R(int) = 0.0477], F2 refinement, R1 = 0.0312,
wR2 = 0.0698 for [I > 2s(I)], 445 parameters. The absolute structure was
correctly indicated by the Flack parameter being zero within experimental
cc/b4/b401301h/ for crystallographic data in .cif or other electronic
format.
Fig. 2 ORTEP ellipsoid plot at 30% probability of the molecular structure
of ddppm (top) and 4 (bottom). Solvent molecules and the BF4 anion in 4
have been omitted for clarity. Selected distances (Å) for 4: Rh(1)–N(1)
2.068(3), Rh(1)–N(2) 2.069(3), Rh(1)–P(2) 2.2398(9), Rh(1)–P(1)
2.2503(9).
1 A. C. R. Fauconnier, Acad. Sci., 1882, 95, 991.
2 G. De Coster, K. Vandyck, E. Van der Eycken, J. Van der Eycken, M.
Elseviers and H. Roper, Tetrahedron: Asymmetry, 2002, 13, 1673.
3 (a) J. Bakos, B. Heil and L. Markó, J. Organomet. Chem., 1983, 253(2),
249; (b) J.-C. Yuan and S.-J. Lu, Organometallics, 2001, 20, 2697.
4 J. G. Calzada and J. Hooz, Org. Synth. Coll., 1988, Vol VI, 634.
5 V. Cere, C. Paolucci, S. Pollicino, E. Sandri and A. Fava, Tetrahedron
Lett., 1989, 30(48), 6737.
6 A. C. Cope and T. V. Shen, J. Am. Chem. Soc., 1956, 78, 3177.
7 T. Bunlaksananusorn and P. Knochel, Tetrahedron Lett., 2002, 43,
5817.
8 K. Toriumi, T. Ito, H. Takaya, T. Souchi and R. Noyori, Acta
Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1982, B38,
807.
9 W. Tang and H. Zhang, Chem. Rev., 2003, 103, 3029.
10 J. Wu, C. C. Pai, W. H. Kwok, R. W. Guo, T. T. L. Au-Yeung, C. H.
Yeung and A. S. C. Chan, Tetrahedron: Asymmetry, 2003, 14, 987.
11 H. Takaya, K. Mashima, K. Koyano, M. Yagi, H. Kumobayashi, T.
Taketomi, S. Akutagawa and R. Noyori, J. Org. Chem., 1986, 51,
629.
observations have been reported previously by other researchers.10
The corresponding methyl ester affords methyl succinate quantita-
tively but with lower enantioselectivity than itaconic acid (compare
runs 1 and 3). (Z)-N-acetamido cinnamic acid is again hydro-
genated quantitatively but with moderate enantioselectivity (30%,
run 5). For comparison, we also generated in situ a ruthenium
catalyst from [Ru(p-cymene)Cl2]2 and ddppm (run 7).10 Here
hydrogenation of (Z)-N-acetamido cinnamic acid gives the best
enantioselectivity (73%) observed from this set of experiments.
These unoptimised results show that ddppm forms active catalysts
although currently not with the high enantioselectivities observed
with other hydrogenation catalysts.9
C h e m . C o m m u n . , 2 0 0 4 , 1 2 3 6 – 1 2 3 7
1237