698-69-1Relevant articles and documents
Additive-free selective methylation of secondary amines with formic acid over a Pd/In2O3 catalyst
Benaissa, Idir,Cantat, Thibault,Genre, Caroline,Godou, Timothé,Pinault, Mathieu
, p. 57 - 61 (2022/01/19)
Formic acid is used as the sole carbon and hydrogen source in the methylation of aromatic and aliphatic amines to methylamines. The reaction proceeds via a formylation/transfer hydrogenation pathway over a solid Pd/In2O3 catalyst without the need for any additive.
Photochemical Reaction of N,N-Dimethylanilines with N-Substituted Maleimides Utilizing Benzaldehyde as the Photoinitiator
Nikitas, Nikolaos F.,Theodoropoulou, Maria A.,Kokotos, Christoforos G.
supporting information, p. 1168 - 1173 (2021/02/01)
Photoorganocatalysis constitutes a powerful domain of photochemistry and organic synthesis. The scaffold of pyrrolo[3,4-c]quinolinoles exhibits interesting and potent inhibition against various enzymes, making them really promising pharmaceutical targets. Herein, we describe a photochemical methodology for the reaction of N,N-dimethylanilines with N-substituted maleimides, utilizing benzaldehyde as the photoinitiator. A variety of substituted N,N-dimethylanilines and N-substituted maleimides were converted into the corresponding adducts in moderate to high yields.
Aminomethylation of Aryl Bromides by Nickel-Catalyzed Electrochemical Redox Neutral Cross Coupling
Ma, Yueyue,Hong, Jufei,Yao, Xiantong,Liu, Chengyu,Zhang, Ling,Fu, Youtian,Sun, Maolin,Cheng, Ruihua,Li, Zhong,Ye, Jinxing
supporting information, p. 9387 - 9392 (2021/12/17)
We develop an electrochemical nickel-catalyzed aminomethylation of aryl bromides under mild conditions. The convergent paired electrolysis makes full use of anode and cathode processes, free of a terminal oxidant, a sacrificial anode, a metal reductant, and a prefunctionalized radical precursor. In addition, this method exhibits wide functional group tolerance (63 examples), including some sensitive substituents and aromatic heterocycles. This redox neutral cross coupling provides a more environmentally friendly and synthetic practical protocol for forging C(sp2)–C(sp3) bonds.
Preparation method of N-alkylated derivative of primary amine compound
-
Paragraph 0021; 0043, (2021/07/09)
The invention relates to a preparation method of an N-alkylated derivative of a primary amine compound. The method comprises the following steps: uniformly mixing a primary amine compound, an alcohol compound and a catalyst in a reactor, and heating to react for a period of time to generate an N-alkylated substituted tertiary amine compound; wherein the catalyst is a copper-cobalt bimetallic catalyst, and the carrier of the catalyst is Al2O3. According to the method, alcohol is adopted as an alkylating reagent and is low in price and easy to obtain, a byproduct is water, no pollution is caused to the environment, and the overall reaction atom economy is high; the catalyst is simple in preparation method, low in cost, high in reaction activity and good in structural stability; meanwhile, by using the copper-cobalt bimetallic catalyst, the use of strong base additives can be avoided, and the requirement on reaction equipment is low; and the reaction post-treatment is convenient, and the catalyst can be recycled and is environment-friendly.
Additive-freeN-methylation of amines with methanol over supported iridium catalyst
Liu, Xiang,Loh, Teck-Peng,Qiang, Wenwen,Wang, Jing,Ye, Sen,Zhu, Longfei
, p. 3364 - 3375 (2021/06/06)
An efficient and versatile zinc oxide-supported iridium (Ir/ZnO) catalyst was developed to catalyze the additive-freeN-methylation of amines with methanol. Mechanistic studies suggested that the high catalytic reactivity is rooted in the small sizes (1.4 nm) of Ir nanoparticles and the high ratio (93%) of oxidized iridium species (IrOx, Ir3+and Ir4+) on the catalyst. Moreover, the delicate cooperation between the IrOxand ZnO support also promoted its high reactivity. The selectivity of this catalyticN-methylation was controllable between dimethylation and monomethylation by carefully tuning the catalyst loading and reaction solvent. Specifically, neat methanol with high catalyst loading (2 mol% Ir) favored the formation ofN,N-dimethylated amine, while the mesitylene/methanol mixture with low catalyst loading (0.5 mol% Ir) was prone to producing mono-N-methylated amines. An environmentally benign continuous flow system with a recycled mode was also developed for the efficient production ofN-methylated amines. With optimal flow rates and amine concentrations, a variety ofN-methylamines were produced with good to excellent yields in this Ir/ZnO-based flow system, providing a starting point for the clean and efficient production ofN-methylamines with this cost-effective chemical process.
Dirhodium-Catalyzed Chemo-and Site-Selective C-H Amidation of N, N-Dialkylanilines
Chen, Gong,Arai, Kenta,Morisaki, Kazuhiro,Kawabata, Takeo,Ueda, Yoshihiro
supporting information, p. 728 - 732 (2021/01/18)
A method for dirhodium-catalyzed C(sp 3)-H amidation of N, N-dimethylanilines was developed. Chemoselective C(sp 3)-H amidation of N-methyl group proceeded exclusively in the presence of C(sp 2)-H bonds of the electron-rich aromatic ring. Site-selective C(sp 3)-H amidation proceeded exclusively at the N-methyl group of N-methyl-N-Alkylaniline derivatives with secondary, tertiary, and benzylic C(sp 3)-H bonds α to a nitrogen atom.
Fe(III)-catalyzed Oxidative Povarov Reaction with Molecular Oxygen Oxidant
Park, Du Yong,Hwang, Joon Young,Kang, Eun Joo
supporting information, p. 798 - 801 (2021/04/09)
The synthesis of tetrahydroquinoline derivatives from dimethyl anilines and enamides has been developed by Fe(III)-phenanthroline complex under aerobic condition. The oxidation of tertiary anilines involving a single electron transfer of Fe(phen)3(PF6)3 afforded the iminium ion intermediate, which reacted with electron-rich alkenes to build a six-membered N-heterocycles containing quaternary carbon center via the oxidative Povarov reaction process.
Photocatalytic carbocarboxylation of styrenes with CO2for the synthesis of γ-aminobutyric esters
Hahm, Hyungwoo,Han, Min Su,Hong, Sukwon,Kim, Jiyun,Ryoo, Jeong Yup
, p. 6301 - 6312 (2021/07/28)
Metal-free photoredox-catalyzed carbocarboxylation of various styrenes with carbon dioxide (CO2) and amines to obtain γ-aminobutyric ester derivatives has been developed (up to 91% yield, 36 examples). The radical anion of (2,3,4,6)-3-benzyl-2,4,5,6-tetra(9H-carbazol-9-yl)benzonitrile (4CzBnBN) possessing a high reduction potential (?1.72 Vvs.saturated calomel electrode (SCE)) easily reduces both electron-donating and electron-withdrawing group-substituted styrenes.
CO2-tuned highly selective reduction of formamides to the corresponding methylamines
Chao, Jianbin,Guo, Zhiqiang,Pang, Tengfei,Wei, Xuehong,Xi, Chanjuan,Yan, Leilei
supporting information, p. 7534 - 7538 (2021/10/12)
We herein describe an efficient, CO2-tuned and highly selective C-O bond cleavage of N-methylated formanilides. With easy-to-handle and commercially available NaBH4 as the reductant, a variety of formanilides could be turned into the desired tertiary amines in moderate to excellent yields. The role of CO2 has been investigated in detail, and the mechanism is proposed on the basis of experiments.
Simple RuCl3-catalyzed N-Methylation of Amines and Transfer Hydrogenation of Nitroarenes using Methanol
Sarki, Naina,Goyal, Vishakha,Tyagi, Nitin Kumar,Puttaswamy,Narani, Anand,Ray, Anjan,Natte, Kishore
, p. 1722 - 1729 (2021/04/19)
Methanol is a potential hydrogen source and C1 synthon, which finds interesting applications in both chemical synthesis and energy technologies. The effective utilization of this simple alcohol in organic synthesis is of central importance and attracts scientific interest. Herein, we report a clean and cost-competitive method with the use of methanol as both C1 synthon and H2 source for selective N-methylation of amines by employing relatively cheap RuCl3.xH2O as a ligand-free catalyst. This readily available catalyst tolerates various amines comprising electron-deficient and electron-donating groups and allows them to transform into corresponding N-methylated products in moderate to excellent yields. In addition, few marketed pharmaceutical agents (e. g., venlafaxine and imipramine) were also successfully synthesized via late-stage functionalization from readily available feedstock chemicals, highlighting synthetic value of this advanced N-methylation reaction. Using this platform, we also attempted tandem reactions with selected nitroarenes to convert them into corresponding N-methylated amines using MeOH under H2-free conditions including transfer hydrogenation of nitroarenes-to-anilines and prepared drug molecules (e. g., benzocaine and butamben) as well as key pharmaceutical intermediates. We further enable one-shot selective and green syntheses of 1-methylbenzimidazole using ortho-phenylenediamine (OPDA) and methanol as coupling partners.