W. Jiang et al. / Bioorg. Med. Chem. Lett. 17 (2007) 1471–1474
1473
Table 2. Pharmacokinetic data for compound 4a compared with RU-486
Compound Fomulation Route Dose (mg/kg) Cmax (lg/mL) CL (mL/min/kg) Tmax (h) t1/2 (h) AUC (mg/h/mL) F (%)
4a
10% soluto iv
Seasame oil po
2
10
5.290
1.847
7.98
0.080
2.00
0.77
2.20
4.173
12.407
—
59
RU-486
10% soluto iv
Seasame oil po
2
10
2.797
0.030
115
0.080
1.00
4.00
2.80
1.371
1.863
—
31
and rat oral/iv pharmacokinetic data were obtained.
Compound 4a has good level of in vitro metabolic
stability in microsome across different species, as shown
in t1/2: human, >30 min; rat, >30 min; mouse, 28 min;
dog, 21 min; monkey, 8 min; rabbit, 30 min. In mice,
nists. The best compounds demonstrated comparable
potency to RU-486 and better selectivity versus PR than
RU-486. Selected compound showed good efficacy in
mice in lowering plasma glucose level. With the potent
and selective GR antagonists in hands, our future efforts
will be focused on achieving liver selectivity.
the GR modulator 4a had
(t = 0.77 h) and high iv clearance (7.98 mL/min/kg), con-
a short iv half-life
sistent with rapid metabolism, observed for steroids.15
References and notes
Compounds 4a and 4b have good CACO-2 permeability
(2.6 · 10À6 cm/s and 14.5 · 10À6 cm/s, respectively).
Compound 4a has a bioavailability of 59% in mice while
RU-486 was 31% tested side by side (Table 2). Com-
pound 4a did not show hERG binding activity (27.8%
inhibition at 10 lM).
1. Lee, K. C.; Lee Kraus, W. Trends Endocrinol. Metab.
2001, 12, 191.
2. DeRijik, R. H.; Sternberg, E. M.; deKloet, E. R. Curr.
Opin. Endocrinol. Diabetes 1997, 4, 185.
3. Gettys, T. W.; Watson, P. M.; Taylor, I. L.; Collins, S. Int.
J. Obes. 1997, 21, 863.
4. Langley, S. C.; York, D. A. Am. J. Physiol. 1990, 259,
R539 (3, Part 2).
RU-486 is a non-selective GR antagonist, which showed
potential utility as anti-diabetic agent.3 Treatment of hu-
man or rodent models of diabetes, with RU-486 (1),
lowers hepatic glucose production (HGP) by reducing
the expression of the key gluconeogenic enzymes (PEP-
CK) and glucose-6-phosphatase (G6Pase).16 Extrahe-
patic GR antagonism, however, has both desirable and
undesirable consequences. Potential benefits include in-
creased insulin sensitivity, fat redistribution, and effects
on bone while detriments include activation of the hypo-
thalamic pituitary adrenal (HPA) axis, diminution of
immune response, and a decreased stress response.17
Clinically, the side effects of RU-486 are significant.
Experience with up to 12 months RU-486 treatment
can lead to symptoms of adrenal insufficiency (nausea,
vomiting, and exhaustion) and hypercortisolemia
(activation of HPA axis, leading to increased cortisol
secretion).18 A liver-specific derivative of RU-486 would
be expected to decrease hepatic glucose output (HGO)
and improve glucose metabolism without the risk of
these peripherally driven side effects.
5. Reus, V. I.; Wolkowitz, O. M. Expert Opin. Investig.
Drugs 2001, 10, 1789.
6. Pomara, N.; Hernando, R. T.; Pena, C. B.; Sidtis, J. J.;
Cooper, T. B.; Ferris, S. Neurochem. Res. 2006, 31, 585.
7. Southren, A. L.; Wandel, T.; Gorden, G. G.; Weinstein, B.
I. J. Ocul. Pharmacol. 1994, 10, 385.
8. Chu, J. W.; Matthias, D. F.; Belanoff, J.; Schatzberg, A.;
Hoffman, A. R.; Feldman, D. J. Clin. Endocrinol. Metab.
2001, 86, 3568.
9. Paris, F. X.; Henry-Suchet, J.; Tesquier, L.; Loysel, T.;
Loffredo, V.; Pez, J. P. Presse medicale (Paris, France:
1983) 1984, 13, 1219.
10. Kehler, J.; Ebert, B.; Dahl, O.; Krogsgarrd-Larsen, P.
Tetrahedron 1999, 55, 771.
11. (a) Kauppi, B.; Jacob, C.; Farnegardh, M.; Yang, J.;
Ahola, H.; Alarcon, M.; Calles, K.; Engstrom, O.; Harlan,
J.; Muchmore, S.; Ramqvist, A.-K.; Thorell, S.; Ohman,
L.; Greer, J.; Gustafsson, J.-A.; Carlstedt-Duke, J.;
Carlquist, M. J. Biol. Chem. 2003, 278, 22748; For
progesterone receptor ligand binding pocket work, see
(b) Madauss, K. P.; Deng, S.-J.; Austin, R. J. H.;
Lambert, M. H.; McLay, I.; Pritchard, J.; Short, S. A.;
Stewart, E. L.; Uings, I. J.; Williams, S. P. J. Med. Chem.
2004, 47, 3381.
Compounds 4a, 4b, 4c, and 4d were tested in the oral
glucose tolerance test (OGTT). The compound is dosed
to three ob/ob mice orally, once a day, at 10, 30, and
100 mg/kg, over a period of 15 days. Postprandial plas-
ma glucose levels are measured everyday and are com-
pared with vehicle. The results of OGTT suggest that
both RU-486 and compound 4a improved the ability
of obese ob/ob mice to handle glucose at the same
dose, while other three compounds 4b, 4c, and 4d did
not show significant glucose lowering effect compared
to vehicle (data not shown). We hope the better selec-
tivity of our compounds versus PR would significantly
reduce the adverse effects associated with PR
antagonism.
12. Link, J. T.; Sorensen, B. K.; Patel, J.; Emery, M.;
Grynfarb, M.; Goos-Nilsson, A. Bioorg. Med. Chem.
Lett. 2004, 14, 2209.
13. Jiang, W.; Fiordeliso, J. J.; Allan, G.; Linton, O.;
Tannenbaum, P.; Xu, J.; Zhu, P.; Gunnet, J.; Demarest,
K.; Lundeen, S.; Sui, Z. Bioorg. Med. Chem. 2006, 14,
6726.
14. For the experimental details for biological measurements
and chemical synthesis, refer to Ref. 13.
15. Morgan, B. P.; Swick, A. G.; Hargrove, D. M.; LaFlam-
me, J. A.; Moynihan, M. S.; Carroll, R. S.; Martin, K. A.;
Lee, E.; Decosta, D.; Bordner, J. J. Med. Chem. 2002, 45,
2417.
16. (a) Garrel, D. R.; Moussali, R.; De Oliveira, A.; Lesiege,
D.; Lariviere, F. J. Clin. Endocrinol. Metab. 1995, 80, 379;
(b) Friedman, J. E.; Sun, Y.; Ishizuka, T.; Farrell, C. J.;
McCormack, S. E.; Herron, L. M.; Hakimi, P.; Lechner,
P.; Yun, J. S. J. Biol. Chem. 1997, 272, 31475.
In summary, we have designed and synthesized a series
of novel phosphorus-containing steroidal GR antago-