G
H.-S. Huang et al.
Letter
Synlett
selectivity. Meanwhile, the interactions of MeOH with mo-
lybdophosphate at the surface of the anions also facilitates
an SN2-type substitution of TBS,29,31 giving TBSOMe as the
major silyl product, as determined by 13C NMR monitoring
of the reaction shown in Table 2, entry 4 (see Supplementa-
ry Information, Figure S3). Because a large excess of MeOH
can function as a nucleophile in desilylation, the reaction
rate in MeOH is markedly faster than that in THF, making
MeOH the ideal solvent for PMA-catalyzed regioselective 5′-
O-TBS deprotection.
References and Notes
(1) Greene, T. W.; Wus, P. G. M. Protective Groups in Organic Synthe-
sis, 3rd ed.; Wiley: New York, 1999.
(2) Kocieński, P. J. Protecting Groups, 3rd ed.; Thieme: Stuttgart,
2005.
(3) Kotch, F. W.; Sidorov, V.; Lam, Y.-F.; Kayser, K. J.; Li, H.; Kaucher,
M. S.; Davis, J. T. J. Am. Chem. Soc. 2003, 125, 15140.
(4) Toti, K. S.; Verbeke, F.; Risseeuw, M. D. P.; Frecer, V.; Munier-
Lehmann, H.; Van Calenbergh, S. Bioorg. Med. Chem. 2013, 21,
257.
(5) Ikeuchi, K.; Fujii, R.; Sugiyama, S.; Asakawa, T.; Inai, M.;
Hamashima, Y.; Choi, J.-H.; Suzuki, T.; Kawagishi, H.; Kan, T. Org.
Biomol. Chem. 2014, 12, 3813.
(6) Hong, S.-p.; Lindsay, H. A.; Yaramasu, T.; Zhang, X.; McIntosh, M.
C. J. Org. Chem. 2002, 67, 2042.
(7) Lin, G.; Chen, C.-H.; Pink, M.; Pu, J.; Li, L. Chem. Eur. J. 2011, 17,
9658.
(8) Madhuri, V.; Kumar, V. A. Nucleosides, Nucleotides Nucleic Acids
2012, 31, 97.
(9) Moharram, S.; Zhou, A.; Wiebe, L. I.; Knaus, E. E. J. Med. Chem.
2004, 47, 1840.
(10) Kim, S. E.; Kim, S. Y.; Kim, S.; Kang, T.; Lee, J. Bioorg. Med. Chem.
Lett. 2005, 15, 3389.
(11) Somu, R. V.; Wilson, D. J.; Bennett, E. M.; Boshoff, H. L.; Celia, L.;
Beck, B. J.; Barry, C. E.; Aldrich, C. C. J. Med. Chem. 2006, 49, 7623.
(12) Tallman, K. A.; Greenberg, M. M. J. Am. Chem. Soc. 2001, 123, 5181.
(13) Lin, G.; Li, L. Angew. Chem. Int. Ed. 2013, 52, 5594.
(14) Pradere, U.; Amblard, F.; Coats, S. J.; Schinazi, R. F. Org. Lett.
2012, 14, 4426.
(15) Seamon, K. L.; Hansen, E. C.; Kadina, A. P.; Kashemirov, B. A.;
McKenna, C. E.; Bumpus, N. N.; Stivers, J. T. J. Am. Chem. Soc.
2014, 136, 9822.
(16) Crouch, R. D. Tetrahedron 2013, 69, 2383; and references therein.
(17) Seela, F.; Ott, J.; Potter, B. V. L. J. Am. Chem. Soc. 1983, 105, 5879.
(18) Tandon, M.; Begley, T. P. Syn. Commun. 1997, 27, 2953.
(19) Hwu, J. R.; Jain, M. L.; Tsai, F.-Y.; Tsay, S.-C.; Balakumar, A.;
Hakimelahi, G. H. J. Org. Chem. 2000, 65, 5077.
(20) Chen, M.-Y.; Patkar, L. N.; Lu, K.-C.; Lee, A. S.-Y.; Lin, C.-C. Tetra-
hedron 2004, 60, 11465.
Figure 3 Proposed mechanism for methanolic PMA-catalyzed regio-
selective cleavage of 5′-O-TBS groups of persilylated nucleosides
In summary, our revisit of the PMA–SiO2/THF heteroge-
neous catalysis system as a potential tool for regioselective
5′-O-TBS deprotection of persilylated nucleosides showed
that significant amount of PMA leached from the solid sup-
port and that desilylation catalyzed by PMA essentially pro-
ceeded in a homogeneous manner. Our research indicated
that the nature of the organic solvent, the reaction concen-
tration, and the temperature significantly affect the reactiv-
ity and regioselectivity of homogeneous PMA. We conclud-
ed that 4–20 mol% of methanolic PMA at 0.05 M and 20 °C
provided the best outcome in terms of regioselective 5′-O-
TBS deprotection of a variety of persilylated nucleoside
(21) Zhu, X.-F.; Williams, H. J.; Scott, A. I. J. Chem. Soc., Perkin Trans. 1
2000, 2305.
(22) Sun, Q.; Sun, J.; Gong, S.-S.; Wang, C.-J.; Pu, S.-Z.; Feng, F.-D. RSC
Adv. 2014, 4, 36036.
substrates on scales of up to 15 g. With the assistance of 31
P
NMR, we found that both the anion cluster forms and the
Lewis acidity of PMA were quite solvent dependent. We
propose that the strong solvation of PMA in MeOH not only
lowers its Lewis acid strength for higher regioselectivity,
but also facilitates the substitution of TBS by MeOH.
(23) Gong, S.-S.; Sun, J.; You, Y.-H.; Chen, J.-Z.; Liu, G.-D.; Sun, Q.
Nucleosides, Nucleotides Nucleic Acids 2016, 6, 295.
(24) Kumar, G. D. K.; Baskaran, S. J. Org. Chem. 2005, 70, 4520.
(25) Janczyk, M.; Appel, B.; Springstubbe, D.; Fritz, H.-J.; Müller, S.
Org. Biomol. Chem. 2012, 10, 1510.
(26) van Veen, J. A. R.; Sudmeijer, O.; Emeis, C. A.; de Wit, H. J. Chem.
Soc., Dalton Trans. 1986, 1825.
(27) Larionov, O. V.; Stephens, D.; Mfuh, A. M.; Arman, H. D.;
Naumova, A. S.; Chaveza, G.; Skenderia, B. Org. Biomol. Chem.
2014, 12, 3026.
(28) Guo, H.; Yin, G. J. Phys. Chem. C 2011, 115, 17516.
(29) López, X.; Carbó, J. J.; Bo, C.; Poblet, J. M. Chem. Soc. Rev. 2012,
41, 7537.
Funding Information
This work was supported by National Natural Science Foundation of
China (21562021), Natural Science Foundation (20143ACB21014),
Fellowship for Young Scientists (2015BCB23009), and a Sci & Tech
Project from the Department of Education (GJJ160763) of Jiangxi
(30) Beckett, M. A.; Strickland, G. C.; Holland, J. R.; Varma, K. S.
Polymer 1996, 37, 4629.
Province.
N
ati
o
n
a
lNaturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
of
C
h
i
n
a
(2
1
5
6
2
0
2
1)NaturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
(2
0
1
4
3
A
C
B
2
1
0
1
4)
(31) Song, Y.-F.; Tsunashima, R. Chem. Soc. Rev. 2012, 41, 7384.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–G