C O M M U N I C A T I O N S
Table 2. Preparation of R-Indole Carbonyl Compounds
Scheme 1. Enantioselective Total Syntheses of (+)-1 and (-)-10a
a Isolated yield after chromatography. b Yield based on recovered sm.
c LDA used.
generous donation of process vials used in this study (6 f 7).
Financial support for this work was provided by The Scripps
Research Institute, Eli Lilly & Co, and the National Science
Foundation (predoctoral fellowship to J.M.R.).
Supporting Information Available: Detailed experimental pro-
cedures, copies of all spectral data, and full characterization. X-ray
crystallographic file in CIF format. This material is available via the
References
(1) One-third of the following book is dedicated to indole-containing natural
products: Nicolaou, K. C.; Snyder S. A. Classics in Total Synthesis II;
Wiley-VCH: Weinheim, 2003; Chapters 5, 8, 12, 18, 19, 20, and 22, p
639. For an excellent overview of indole synthesis and reactivity, see:
Sundberg, R. J. Indoles; Academic Press: San Diego, 1996; p 175.
(2) Hapalindole isolation: Moore, R. E.; Cheuk, C.; Yang, X.-Q. G.; Patterson,
G. M. L.; Bonjouklian, R.; Smitka, T. A.; Mynderse, J. S.; Foster, R. S.;
Jones, N. D.; Swartzendruber, J. K.; Deeter, J. B. J. Org. Chem. 1987,
52, 1036-1043; Fischerindole isolation: Park, A.; Moore, R. E.; Patterson,
G. M. L. Tetrahedron Lett. 1992, 33, 3257-3260.
a Reagents and conditions: (a) LHMDS (1.5 equiv), THF, -78 °C, 20
min then L-Selectride (1.05 equiv), 1 h, then CH3CHO (6.0 equiv), -78f23
°C, 2 h; (b) Martin sulfurane (1.1 equiv), CHCl3, 10 min, 75% overall; (c)
TMSOTf (3.0 equiv), MeOH (1.1 equiv), CH2Cl2, 0 °C, 1 h, 75% bsm; (d)
NaBH3CN (10 equiv), NH4OAc (40 equiv), MeOH, THF, 150 °C, 2 min,
61% (7); for 9: same reagents, 23 °C, 48 h, 55%; (e) CS(imid)2 (1.1 equiv),
CH2Cl2, 0f23 °C, 3 h, 63% (1), 60% (10).
(3) Barton, D. H. R.; Deflorin, A. M.; Edwards, O. E. J. Chem. Soc. 1956,
530-534.
(1) and (-)-12-epi-fischerindole U isothiocyanate (10) proceeds
in 22% and 15% overall yield from (R)-carvone, respectively.
The scope of the direct indole coupling was briefly evaluated
by the study of the examples summarized in Table 2 using
conditions established for the synthesis of 4. Free alcohols are
tolerated (12, additional LHMDS added), hindered indoles such as
13 are accessible, and amides also participate in this reaction (14-
18) as illustrated with Evans and Oppolzer auxiliaries. The latter
substrates (15-18) proceed with high diastereoselectivity. The
method also works with functionalized indole substrates (16-18)
and tert-butyl esters (19).
In conclusion, we have developed a new and practical method
for the direct coupling of indoles with carbonyl compounds that
has been applied to the most concise and efficient synthesis of (+)-1
yet reported and to the first total synthesis and absolute configu-
ration assignment of a fischerindole [(-)-10]. This protocol can
be used to construct quaternary carbon centers, is amenable to
asymmetric synthesis, and can be performed on a multigram scale.
Indoles that would be otherwise unobtainable in a single step from
readily available materials are now easily accessed, thus filling a
gap in indole synthesis methodology.1
(4) (a) Rathke, M. W.; Lindert, A. J. Am. Chem. Soc. 1971, 93, 4605-4606.
(b) Dessau, R. M.; Heiba, E. I. J. Org. Chem. 1974, 39, 3457-3459. (c)
Ito, Y.; Konoike, T.; Saegusa, T. J. Am. Chem. Soc. 1975, 97, 2912-
2914. (d) Ito, Y.; Konoike, T.; Harada, T.; Saegusa T. J. Am. Chem. Soc.
1977, 99, 1487-1493. (e) Frazier, R. H.; Harlow, R. L. J. Org. Chem.
1980, 45, 5408-5411. (f) Paquette, L. A.; Bzowej, E. I.; Branan, B. M.;
Stanton, K. J. J. Org. Chem. 1995, 60, 7277-7283.
(5) Commercially available from several sources, including Aldrich.
(6) We initially imagined the mechanism shown in Figure 1, but other
mechanistic pathways may be operative such as addition of 3• to 2- to
give 4•- followed by oxidation to 4.
(7) Total syntheses of (+)-1: (a) Vaillancourt, V.; Albizati, K. F. J. Am. Chem.
Soc. 1993, 115, 3499-3502 (ca. 4% yield). (b) Kinsman, A. C.; Kerr, M.
A. J. Am. Chem. Soc. 2003, 125, 14120-14125 (ca. 1.0% yield). Total syn-
thesis of racemic 1: Kinsman, A. C.; Kerr, M. A. Org. Lett. 2001, 3, 3189-
3191 (ca. 9% yield). Yields are from commercially available material.
(8) Isolation (+)-10: Stratmann, K.; Moore, R. E.; Bonjouklian, R.; Deeter,
J. B.; Patterson, G. M. L.; Shaffer, S.; Smith, C. D.; Smitka, T. A. J. Am.
Chem. Soc. 1994, 116, 9935-9942.
(9) Addition of L-Selectride (1-3 equiv) to 4 followed by addition of
acetaldehyde led only to the corresponding saturated ketone due to internal
quenching of the resulting enolate onto the indole N-H.
(10) Fortunato, J. M.; Ganem, B. J. Org. Chem. 1976, 41, 2194-2200.
(11) The conditions used by Albizati (ref 7a) for reductive amination were
NaBH3CN (10 equiv), NH4OAc (40 equiv), 7 days, dr ) 3:1.
(12) For recent uses of microwave irradiation in complex natural product
synthesis, see: Raheem, I. T.; Goodman, S. N.; Jacobsen, E. N. J. Am.
Chem. Soc. 2004, 126, 706-707; Baran, P. S.; O’Malley, D. P.; Zografos,
A. L. Angew. Chem., Int. Ed. 2004, 43, 2674-2677.
(13) The minor amine diastereomer was identical to 12-epi-hapalindole D
isothiocyanate (ref 8), see Supporting Information for details.
(14) Fukuyama observed this ring closure as an undesired byproduct during
the course of a beautiful total synthesis of (-)-hapalindole G: Fukuyama,
T.; Chen, X. J. Am. Chem. Soc. 1994, 116, 3125-3126.
Acknowledgment. We thank Dr. D. H. Huang and Dr. L.
Pasternak for NMR spectroscopic assistance and Dr. G. Suizdak
and Dr. R. Chadha for mass spectrometric and X-ray crystal-
lographic assistance, respectively. We are grateful to Biotage for a
JA047874W
9
J. AM. CHEM. SOC. VOL. 126, NO. 24, 2004 7451