3460 Organometallics, Vol. 23, No. 14, 2004
Wong et al.
(CSCl2), iodoacetic anhydride, and 4-aminophenylacetylene
were purchased from Aldrich Chemical Co. [Pt(tBu3tpy)-
(MeCN)](OTf)211e,g was prepared according to literature meth-
ods. Human serum albumin (HSA) fraction V was obtained
from Calbiochem and was used as received. All buffer compo-
nents were of molecular biology grade and used without
purification. All solvents were purified and distilled using
standard procedures before use. All other reagents were of
analytical grade and were used as received.
Ch a r t 1
Syn th esis. [P t(tBu 3tp y)(CtC-C6H4-NH2-4)](OTf) (1).
To a stirred solution of 4-aminophenylacetylene (50 mg, 0.43
mmol) in methanol (70 mL) was added sodium hydroxide (23
mg, 0.58 mmol). The resultant solution was stirred at room
temperature for 30 min. [Pt(tBu3tpy)(MeCN)](OTf)2 (300 mg,
0.39 mmol) was added to the reaction mixture and was then
heated under reflux for 12 h. The mixture was filtered, and
the solvent was evaporated to dryness. The product was
isolated by column chromatography on silica gel using di-
chloromethane-acetone (3:1 v/v) as eluent. Subsequent re-
crystallization by vapor diffusion of diethyl ether into a
dichloromethane solution of the product gave 1 as purple-red
intercalation,14,16 and protein binding behavior.17 To our
surprise, there has so far been no report on the utiliza-
tion of this class of platinum(II) complexes as lumines-
cent labeling reagents for biomolecules. Herein we
report the synthesis and characterization of three
luminescent alkynylplatinum(II) terpyridyl complexes,
[Pt(tBu3tpy)(CtC-C6H4-X-4)](OTf) (X ) NH2 1, NCS
2, NHCOCH2I 3) (Chart 1). Their electrochemical and
photophysical behaviors have been studied, and the
molecular structure of 2 has also been determined by
X-ray crystallography. In view of the ready reactivity
of the isothiocyanate and iodoacetamide functional
groups in complexes 2 and 3 with the primary amine
and sulfhydryl group, respectively, of biomolecules,
human serum albumin (HSA) has been labeled with
complexes 2 and 3. The luminescence properties of the
corresponding bioconjugates have been investigated in
order to demonstrate their role as potential luminescent
labels for biomolecules.
1
crystals. Yield: 200 mg (60%). H NMR (400 MHz, (CD3CN),
298 K, relative to Me4Si, δ/ppm): 1.46 (s, 18H, tert-butyl
protons), 1.54 (s, 9H, tert-butyl protons), 4.27 (s, 2H, amino
protons), 6.62 (d, 2H, J ) 9 Hz, phenyl protons), 7.22 (d, 2H,
J ) 9 Hz, phenyl protons), 7.72 (dd, 2H, J ) 2 Hz, 6 Hz,
terpyridyl protons), 8.26 (d, 2H, J ) 2 Hz, terpyridyl protons),
8.31 (s, 2H, terpyridyl protons), 9.02 (d with Pt satellite, 2H,
J ) 6 Hz, J Pt-H ) 46 Hz, terpyridyl protons). IR (KBr disk,
ν/cm-1): 2112(m) ν(CtC); 3365(m) ν(N-H). Positive FAB-
MS: m/z 712 [M - OTf]+. Anal. Calcd for C36H41N4F3SO3Pt‚
1/2CH2Cl2: C, 48.48; H, 4.54; N, 6.20. Found: C, 48.79; H,
4.66; N, 6.20.
[P t(tBu 3tp y)(CtC-C6H4-NCS-4)](OTf) (2). To a mixture
of 1 (100 mg, 84.4 µmol) and CaCO3 (34 mg, 339.7 µmol) in
dry acetone (8 mL) was added CSCl2 (13 µL, 170.5 µmol). After
stirring for 2 h in the dark under nitrogen at 0 °C, the
suspension was filtered and the filtrate evaporated to dryness
to yield an orange-yellow solid. Recrystallization from vapor
diffusion of diethyl ether into an acetone solution of the product
Exp er im en ta l Section
1
Ma ter ia ls a n d Rea gen ts. Dichloro(1,5-cyclooctadiene)-
platinum(II) was obtained from Strem Chemicals Inc. 4,4′,4′′-
Tri-tert-butyl-2,2′:6′,2′′-terpyridine (tBu3tpy), thiophosgene
afforded 2 as orange-yellow crystals. Yield: 60 mg (80%). H
NMR (400 MHz, (CD3CN), 298 K, relative to Me4Si, δ/ppm):
1.45 (s, 18H, tert-butyl protons), 1.53 (s, 9H, tert-butyl protons),
7.29 (d, 2H, J ) 8 Hz, phenyl protons), 7.47 (d, 2H, J ) 8 Hz,
phenyl protons), 7.70 (dd, 2H, J ) 2 Hz, 6 Hz, terpyridyl
protons), 8.27 (d, 2H, J ) 2 Hz, terpyridyl protons), 8.31 (s,
2H, terpyridyl protons), 8.96 (d with Pt satellite, 2H, J ) 6
Hz, J Pt-H ) 43 Hz, terpyridyl protons). IR (KBr disk, ν/cm-1):
2176(m) and 2118(m) ν(NCS). Positive FAB-MS: m/z 754 [M
- OTf]+. Anal. Calcd for C37H39N4F3S2O3Pt: C, 49.17; H, 4.32;
N, 6.20. Found: C, 49.09; H, 4.41; N, 6.01.
(11) (a) Aldridge, T. K.; Stacy, E. M.; McMillin, D. R. Inorg. Chem.
1994, 33, 722. (b) Arena, G.; Calogero, G.; Campagna, S.; Scolaro, L.
M.; Ricevuto, V.; Romeo, R. Inorg. Chem. 1998, 37, 2763. (c) Lai, S.
W.; Chan, M. C. W.; Cheung, K. K. Inorg. Chem. 1999, 38, 4267. (d)
Yam, V. W. W.; Tang, R. P. L.; Wong, K. M. C.; Ko, C. C.; Cheung, K.
K. Inorg. Chem. 2001, 40, 571. (e) Yam, V. W. W.; Tang, R. P. L.;
Wong, K. M. C.; Cheung, K. K. Organometallics 2001, 20, 4476. (f)
McMillin, D. R.; Moore, J . J . Coord. Chem. Rev. 2002, 229, 113. (g)
Yam, V. W. W.; Wong, K. M. C.; Zhu, N. Angew. Chem., Int. Ed. 2003,
42, 1400.
[P t(tBu 3tp y)(CtC-C6H4-NHCOCH2I-4)](OTf) (3). Com-
plex 1 (50 mg, 0.249 mmol) and iodoacetic anhydride (132 mg,
0.373 mmol) were stirred in acetonitrile (8 mL) at room
temperature in the dark under an inert atmosphere of nitrogen
for 24 h. The solution was evaporated to dryness to give an
orange-red solid. The product was purified by column chro-
matography on silica gel using dichloromethane-acetone (3:1
v/v) as eluent. Subsequent recrystallization by vapor diffusion
of diethyl ether into an acetone solution of the product gave 3
as red crystals. Yield: 154 mg (60%). 1H NMR (400 MHz,
(CD3CN), 298 K, relative to Me4Si, δ/ppm): 1.46 (s, 18H, tert-
butyl protons), 1.54 (s, 9H, tert-butyl protons), 3.85 (s, 2H,
methylene protons), 7.43 (d, 2H, J ) 9 Hz, phenyl protons),
7.54 (d, 2H, J ) 9 Hz, phenyl protons), 7.72 (dd, 2H, J ) 2 Hz,
6 Hz, terpyridyl protons), 8.27 (d, 2H, J ) 2 Hz, terpyridyl
protons), 8.32 (s, 2H, terpyridyl protons), 8.73 (s, 1H, amide
proton), 9.00 (d with Pt satellite, 2H, J ) 6 Hz, J Pt-H ) 45 Hz,
terpyridyl protons). IR (KBr disk, ν/cm-1): 2118(w) ν(CtC).
Positive FAB-MS: m/z 880 [M - OTf]+. Anal. Calcd for
(12) (a) Zuleta, J . A.; Chesta, C. A.; Eisenberg, R. J . Am. Chem. Soc.
1989, 111, 8916. (b) Zuleta, J . A.; Burbery, M. S.; Eisenberg, R. Coord.
Chem. Rev. 1990, 97, 47. (c) Paw, W.; Lachicotte, R. J .; Eisenberg, R.
Inorg. Chem. 1998, 37, 4139.
(13) (a) Hissler, M.; Connick, W. B.; Geiger, D. K.; McGarrah, J . E.;
Lipa, D.; Lachicotte, R. J .; Eisenberg, R. Inorg. Chem. 2000, 39, 447.
(b) Whittle, C. E.; Weinstein, J . A.; Geore, M. W.; Schanze, K. S. Inorg.
Chem. 2001, 40, 4053. (c) Chan, S. C.; Chan, M. C. W.; Wang, Y.; Che,
C. M.; Cheung, K. K.; Zhu, N. Chem. Eur. J . 2001, 7, 4180. (d) Lu, W.;
Chan, M. C. W.; Zhu, N.; Che, C. M.; He, Z.; Wong, K. Y. Chem. Eur.
J . 2003, 9, 6155.
(14) (a) Lippard, S. J . Acc. Chem. Res. 1978, 11, 211. (b) Che, C. M.;
Ma, D. L. Chem. Eur. J . 2003, 9, 6133.
(15) (a) Rosenberg, B.; Van Camp, L.; Trosko, J . E.; Mansour, V. H.
Nature (London) 1969, 222, 385. (b) McFadyen, W. D.; Wakelin, L. P.
G.; Roos, I. A. G.; Leopold, V. A. J . Med. Chem. 1985, 28, 1113. (c)
Fuertes, M. A.; Alonso, C.; Pe´rez, J . M. Chem. Rev. 2003, 103, 645.
(16) (a) J amieson, E. R.; Lippard, S. J . Chem. Rev. 1999, 99, 2467.
(b) Peyratout, C. S.; Aldridge, T. K.; Crites, D. K.; McMillin, D. R. Inorg.
Chem. 1995, 34, 4484. (c) Che, C. M.; Yang, M.; Wong, K. H.; Chan,
H. L.; Lam, W. Chem. Eur. J . 1999, 5, 3350.
(17) Ratilla, E. M. A.; Brothers, H. M.; Kostic´, N. M. J . Am. Chem.
Soc. 1987, 109, 4592.