C. Strohmann et al. / Journal of Organometallic Chemistry 661 (2002) 149ꢃ
/
158
157
exchange reactions and neutral or cationic palladium
complexes can be obtained. When the ‘carbanionic’
fragment of lithium alkyl (R,S)-17 is transferred to
palladium, two reactive diastereomerically enriched
palladium alkyls were isolated that bear a stereogenic
carbon center directly bound to an active metal (labile
ligands at the palladium center). We are hopeful to
observe stereoselective reactions at the active metal site
or at the PdÃ
/
C bond of palladium compounds
Fig. 16. Molecular structure and numbering scheme of compound
(cis,S,S,S)-22 in the crystal (Schakal plot) [8]. Selected bond distances
(trans,S,S,R)-21 and (cis,S,S,S)-22.
˚
(A) and angles (8): SiÃ
/
C(3) 1.907(8), PdÃ
/
C(3) 2.071(7), PdÃN 2.112(6),
/
C(3)Ã
/
C(4) 1.521(9), C(3)ÃSiÃC(10) 104.5(3).
/
/
Acknowledgements
Compound (cis,S,S,S)-22 crystallized from CH2Cl2ꢃ
/
n-pentane in the orthorhombic crystal system, space
group P212121 (Fig. 16). When compound
(trans,S,S,R)-21 is transformed into compound
(cis,S,S,S)-22, the absolute configuration at C(3) does
not change, as can be seen from Fig. 16. Thus, the
isomerization at the palladium center does not influence
the stereochemistry at the metalated carbon center.
Both palladium compounds (trans,S,S,R)-21 and
(cis,S,S,S)-22 are reactive molecules (labile ligands in
either cis or trans position) that bear a stereogenic
carbon center in a-position to the active metal fragment.
Very selective reactions at either the metal center or the
We are grateful to the Deutsche Forschungsge-
meinschaft (DFG), especially the Sonderforschungsber-
eich SFB 347, the Fonds der Chemischen Industrie (FCI)
and the Institut fur Anorganische Chemie der Universitat
¨
the grant of a doctoral scholarship.
¨
Wurzburg for financial support. D.S. thanks the FCI for
¨
References
[1] (a) A. Basu, S. Thayumanavan, Angew. Chem. Int. Ed. Engl. 41
(2002) 716 (and cited literature therein);
PdÃ
/
C bond should be the consequence.
(b) D. Hoppe, T. Hense, Angew. Chem. Int. Ed. Engl. 36 (1997)
2282 (and cited literature therein).
[2] (a) O. Stratmann, B. Kaiser, R. Frohlich, O. Meyer, D. Hoppe,
¨
Chem. Eur. J. 7 (2001) 423;
(b) T. Heinl, S. Retzow, D. Hoppe, G. Fraenkel, A. Chow, Chem.
Eur. J. 5 (1999) 3464;
5. Conclusions
(c) C. Derwing, H. Frank, D. Hoppe, Eur. J. Org. Chem. (1999)
3519;
(d) J. Schwerdtfeger, S. Kolczewski, B. Weber, R. Frohlich, D.
¨
Our studies on [(aminomethyl)silylmethyl]metal com-
pounds have shown that it is possible to transfer the
‘carbanionic’ fragment of non-chiral (amino-
methyl)(lithiomethyl)silane 2 to other metals, like mag-
nesium, gallium, palladium, cadmium or mercury. The
Hoppe, Synthesis 9 (1999) 573;
(e) E. Wurthwein, K. Behrens, D. Hoppe, Chem. Eur. J. 5 (1999)
¨
3459.
[3] (a) T.A. Johnson, M.D. Curtis, P. Beak, J. Am. Chem. Soc. 123
(2001) 1004;
corresponding
bis{[diphenyl(piperidinomethyl)si-
lyl]methyl}metal(II) compounds have been obtained
for Mg, Ga, Cd and Hg, and the molecular structures
have been determined. In case of Hg and Pd, the
[diphenyl(piperidinomethyl)silyl]methylmetal(II) chlor-
ides were synthesized and the molecular structures
were determined. All of the compounds are well-defined
in solution and the solid state.
For highly diastereomerically enriched (amino-
methyl)(lithiomethyl)silane (R,S)-17, high diastereos-
electivities could be observed for the metathesis
reactions with mercury and palladium compounds.
Furthermore, the stereochemical course for the reaction
sequence of deprotonation, nucleophilic substitution
(b) P. Beak, D.R. Anderson, M.D. Curtis, J.M. Laumer, D.J.
Pippel, G.A. Weisenburger, Acc. Chem. Res. 33 (2000) 715;
(c) G.A. Weisenburger, N.C. Faibish, D.J. Pippel, P. Beak, J. Am.
Chem. Soc. 121 (1999) 9522;
(d) D.J. Pippel, G.A. Weisenburger, S.R. Wilson, P. Beak,
Angew. Chem. Int. Ed. Engl. 37 (1998) 2522.
[4] H.J. Reich, K.J. Kulicke, J. Am. Chem. Soc. 118 (1996) 273.
[5] (a) G. Fraenkel, J.H. Duncan, K. Martin, J. Wang, J. Am. Chem.
Soc. 121 (1999) 10538;
(b) G. Fraenkel, K. Martin, J. Am. Chem. Soc. 117 (1995) 10336.
[6] C. Lambert, P.v.R. Schleyer, L. Brandsma, in: M. Hanack (Ed.),
Methoden Org. Chem., 4th ed., Houben-Weyl: 1952ꢃ
/1993, vol.
E19d, Thieme Verlag, Stuttgart, 1993, pp. 1ꢃ113.
/
[7] See also: C. Strohmann, B.C. Abele, in: N. Auner, J. Weis (Eds.),
Organosilicon Chemistry III, Wiley-VCH, Weinheim (Germany),
(alkylation of the lithium alkyl) and oxidative SiÃ
/
C
1998, pp. 206ꢃ210.
[8] E. Keller, SCHAKAL-99, University of Freiburg, Freiburg, Ger-
many, 1999.
/
cleavage, starting from unmetalated (aminomethyl)ben-
zylsilane 16, was solved.
[9] C. Strohmann, D. Schildbach, Acta Crystallogr. C58 (2002),
m447.
In the special case of (aminomethyl)(palladio-
methyl)silanes, it could be shown that the five-mem-
bered palladacycle remains intact during ligand
[10] See also: (a) G.-J.M. Gruter, G.P.M. van Klink, O.S. Akkerman,
F. Bickelhaupt, Chem. Rev. 95 (1995) 2405;