1084
S. Fioravanti et al.
LETTER
It is noteworthy that high chemoselectivity in the amina-
tion reaction is induced by CaO even in the presence of the
cyano group, that is reported to give also the correspond-
ing oxadiazoles under homogeneous reaction condi-
tions.12
References
(1) (a) Bicker, U. W. In Immune Modulation Agents and their
Mechanisms; Fenical, R. G.; Chirigos, M. A., Eds.; Marcel
Dekker: New York and Basel, 1984, 447. (b) Iyengar, B. S.;
Dorr, R. T.; Alberts, D. S.; Hersh, E. M.; Salmon, S. E.;
Remers, W. A. J. Med. Chem. 1999, 42, 510.
Aziridines were also obtained starting from a,b-unsaturat-
ed 1,1-dinitriles 1k–n (entries 11–14), showing no differ-
ences in reactivity and yields.
(2) Iyengar, B. S.; Dorr, R. T.; Remers, W. A. J. Med. Chem.
2004, 47, 218.
(3) (a) Remers, W.; Iyengar, B. US 6476236, 2002; Chem.
Abstr. 2002, 137, 337772. (b) Lopez-Berestein, G.; Remers,
W. A.; Hersh, E. M. PCT Int. Appl. 2002041871, 2002;
Chem. Abstr. 2002, 137, 10970. (c) Kitagawa, S.; Minafuji,
M.; Yokoi, T. Jpn. Kokai Tokkyo Koho JP 61140561, 1986;
Chem. Abstr. 1987, 106, 50009. (d) Bosies, E.; Berger, H.;
Kampe, W.; Bicker, U.; Grafe, A. US 4410532, 1983; Chem.
Abstr. 1984, 100, 68151. (e) Berger, H.; Gall, R.; Kampe,
W.; Bicker, U.; Kuhn, R. Ger. Offen DE 2948832, 1981;
Chem. Abstr. 1981, 95, 115257.
In order to extend the study of the sulfonyl-activated hy-
droxycarbamate reactivity, reagents with Cbz,13 Boc,14 or
Fmoc15 groups rather than ethoxycarbonyl group were
tested in the reactions on some a,b-unsaturated nitriles 1.
Table 2 Aziridination of a,b-Unsaturated Nitriles Using Different
Sulfonyloxycarbamates
(4) Boukhris, S.; Souizi, A. Tetrahedron Lett. 2003, 44, 3259.
(5) (a) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599.
(b) Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. Chem. Rev. 1997,
97, 2341. (c) Stamm, H. J. Prakt. Chem. 1999, 4, 319.
(d) Atkinson, R. S. Tetrahedron 1999, 55, 1519.
(e) McCoull, W.; Davis, F. A. Synthesis 2000, 1347.
(f) Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247.
(6) (a) Goodridge, T. H.; Huntress, W. T.; Bratzell, R. P. Cancer
Chemother. Rep. 1963, 26, 341. (b) Dermer, O. C.; Ham, G.
E. Ethyleneimine and other Aziridines; Academic Press:
New York and London, 1969, 425.
(7) (a) Dauban, P.; Dodd, R. H. Tetrahedron Lett. 1998, 39,
5739. (b) Schirmeister, T.; Peric, M. Bioorg. Med. Chem.
2000, 8, 1281.
(8) (a) Fioravanti, S.; Morreale, A.; Pellacani, L.; Tardella, P. A.
Synthesis 2001, 1975. (b) Fioravanti, S.; Morreale, A.;
Pellacani, L.; Tardella, P. A. J. Org. Chem. 2002, 67, 4972.
(c) Colantoni, D.; Fioravanti, S.; Pellacani, L.; Tardella, P.
A. Org. Lett. 2004, 6, 197.
Entry
Substratea
Z
Yield (%)b
1
2
3
4
5
6
7
8
1a
1a
1a
1k
1b
1b
1b
1l
Cbz
Boc
Fmoc
Boc
Cbz
Boc
Fmoc
Boc
86
81
92
82
81
78
96
80
(9) Texier-Boullet, F.; Foucaud, A. Tetrahedron Lett. 1982, 23,
4927.
(10) Lwowski, W.; Maricich, T. J. J. Am. Chem. Soc. 1965, 87,
3630.
a Substrate:CaO:NsONHZ = 1:2:1 (molar ratio).
b After purification.
(11) Typical Experimental Procedure: All compounds were
synthesized with a Carousel Reaction Station from Radleys
Discovery Technologies (UK). The synthesis involved the
following sequential steps. To the stirred solutions of 2.0
mmol of ethyl cyanoacetate or malononitrile in CH2Cl2, 2.4
mmol of aldehyde and 1.0 g of basic Al2O3 were added.
Upon completion, reaction mixtures were filtered. To the so
obtained unsaturated nitriles in CH2Cl2, CaO and
nosyloxycarbamates were added in the amounts reported in
Table 1 and Table 2. After completion (TLC), the crude
aziridines were filtered through plugs filled with silica gel
using a 9:1 hexane/EtOAc mixture and obtained as pale
yellow oils after solvent removal. Selected spectral data of
new compounds. Compound 2a: IR (CCl4): 2253, 1761,
1731 cm–1. 1H NMR (300 MHz, CDCl3): d = 1.13 (t, J = 7.2
Hz, 3 H), 1.24 (t, J = 7.2 Hz, 3 H), 1.34 (t, J = 7.2 Hz, 3 H),
1.68–1.82 (m, 2 H), 3.08 (t, J = 6.6 Hz, 1 H), 4.09–4.23 (m,
2 H), 4.23–4.45 (m, 2 H). 13C NMR (75 MHz, CDCl3):
d = 10.4, 14.0, 14.2, 23.3, 38.6, 51.3, 63.4, 64.1, 113.3,
157.2, 162.6. GC/MS: m/z (%) = 240 (9) [M+], 114 (24), 95
(46), 94 (12), 68 (100), 67 (10). HRMS (ES Q-TOF) calcd
for C11H17N2O4 (M + H)+: 241.1188; found: 241.1200.
Compound 2k: IR (CCl4): 2253, 1756 cm–1. 1H NMR (200
MHz, CDCl3): d = 1.18 (t, J = 7.3 Hz, 3 H), 1.35 (t, J = 7.3
Hz, 3 H), 1.66–1.89 (m, 2 H), 3.19 (t, J = 6.6 Hz, 1 H), 4.22–
4.48 (m, 2 H). 13C NMR (50 MHz, CDCl3): d = 9.9, 14.0,
As shown in Table 2, different N-protected 2-cyano aziri-
dine-2-carboxylates and 2,2-dicyano aziridines were ob-
tained in high yields and with complete stereoselectivity
(entries 1–3 and 5–7).
In summary, a general procedure for the synthesis of
highly functionalized aziridines was reported. Despite
their potential use and application, only few examples of
general synthetic methods of cyano aziridines are reported
in the literature.16 This concise and inexpensive route may
be considered as an efficient protocol for a parallel syn-
thesis of a large number of different cyano aziridines.
Acknowledgment
We thank the Italian Ministero dell’Istruzione, dell’Università e
della Ricerca (MIUR) and the Università degli Studi di Roma La
Sapienza (National Project ‘Stereoselezione in Sintesi Organica.
Metodologia ed Applicazioni’) for financial support.
Synlett 2004, No. 6, 1083–1085 © Thieme Stuttgart · New York