(s, 3H, CH3), 3.29 (d, J = 17.81 Hz, 1H, H-2A), 3.73 (d, J =
17.81 Hz, 1H, H-2B), 5.31 (s, 1H, H-9), 6.60 (s, 1H, H-7). Distilled
water (20 mL) was added, the solution was acidified to pH 2.2 and
extracted with ethyl acetate (2 × 20 mL). The organic layer was
dried and concentrated under reduced pressure to leave the free
acid of 22 as a yellow solid: ESI-HRMS for C10H9NO5S: [M–H]−1
calcd 254.0123 found 254.0130; dH (270 MHz, (CD3)2CO) 2.06 (s,
3H, CH3), 2.96 (br s, 1H, OH), 3.40 (d, J = 17.81 Hz, 1H, H-2A),
3.84 (d, J = 17.81 Hz, 1H, H-2B), 5.48 (d, J = 0.87 Hz, 1H, H-9),
6.92 (d, J = 1.24 Hz, 1H, H-7).
3 (a) H. A. Albrecht, G. Beskid, K.-K. Chan, J. G. Christenson, R.
Cleeland, K. H. Deitcher, N. H. Georgopapadakou, D. D. Keith,
D. L. Pruess, J. Sepinwall, A. C. Specian, R. L. Then, M. Weigele,
K. F. West and R. Yang, J. Med. Chem., 1990, 33, 77–86; (b) H. A.
Albrecht, G. Beskid, J. G. Christenson, J. W. Durkin, V. Fallat, N. H.
Georgopapadakou, D. D. Keith, F. M. Konzelmann, E. R. Lipschitz,
D. H. McGarry, J.-A. Siebelist, C. C. Wei, M. Weigele and R. Yang,
J. Med. Chem., 1991, 34, 669–675; (c) H. A. Albrecht, G. Beskid, J. G.
Christenson, N. H. Georgopapaakou, D. D. Keith, F. M. Konzelmann,
D. L. Pruess, P. L. Rossman and C. C. Wei, J. Med. Chem., 1991, 34,
2857–2864; (d) H. A. Albrecht, G. Beskid, J. G. Christenson, K. H.
Dietcher, N. H. Georgopapadakou, D. D. Keith, F. M. Konzelmann,
D. L. Pruess and C. C. Wei, J. Med. Chem., 1994, 37, 400–407; (e) T. P.
Demuth, R. E. White, R. A. Tietjen, R. J. Storrin, J. R. Skuster, J. A.
Andersen, C. C. McOsker, R. Freedman and F. J. Rourke, J. Antibiot.,
1991, 44, 200–209; (f) P. M. Hershberger and T. P. Demuth, Adv. Exp.
Med. Biol., 1998, 456, 239–267 and references therein.
2,2-dimethyl-5-oxo-2,3,5,6-tetrahydropyrrolo[2,1-b]thiazole-3,
7-dicarboxylic acid 7-methyl ester (23)
4 An interesting exploitation of this elimination reaction pattern has been
reported in the development of a carbapenem antibiotic: H. Rosen, R.
Hajdu, L. Silver, H. Kropp, K. Dorso, J. Kohler, J. G. Sundelof, J. Huber,
G. G. Hammond, J. J. Jackson, C. J. Gill, R. Thompson, B. A. Pelak,
J. H. Epstein-Toney, G. Lankas, R. R. Wilkening, K. J. Wildonger, T. A.
Blizzard, F. P. DiNinno, R. W. Ratcliffe, J. V. Heck, J. W. Kozarich and
M. L. Hammond, Science, 1999, 283, 703–706.
5 (a) T. P. Smyth, M. E. O’Donnell, M. J. O’Connor and J. O. St, Ledger,
J. Org. Chem., 1998, 63, 7600–7618; (b) T. P. Smyth, M. J. O’Connor and
M. E. O’Donnell, J. Org. Chem., 1999, 64, 3132–3138; (c) T. P. Smyth,
M. E. O’Donnell, M. J. O’Connor and J. O. St, Ledger, Tetrahedron,
2000, 56, 5699–5707.
The benzhydryl ester 10 was treated as described above for
7ꢀ. The free acid of 23 was obtained as a yellow glassy solid
(49 mg, 0.181 mmol, 66%); mp 51–52 ◦C (dec); ESI-HRMS
for C11H13NO5S: [M–H]−1 calcd 270.0436 found 270.0439; mmax
(KBr)/cm−1 3438, 1733, 1687; dH (270 MHz, CDCl3) 1.65 (s, 3H,
a-CH3), 1.76 (s, 3H, b-CH3), 3.55 (d, J = 23.26 Hz, 1H, H-6A),
3.65 (d, J = 23.26 Hz, 1H, H-6B), 3.75 (s, 3H, OCH3), 4.42 (s, 1H,
H-3), 6.00 (br s, 1H, OH); dC (67.93 MHz, CDCl3), 25.30 (a-CH3),
32.99 (b-CH3), 40.27 (CH2), 51.52 (CH3O), 62.41, 65.00 (C-2, C-
=
3), 97.21 (C-7), 156.27 (C-8), 164.20, 169.32, 173.31 (3 × C O).
6 C. C. Ruddle and T. P. Smyth, Chem. Commun., 2004, 2332–2333.
7 (a) A. J. Kirby, in Advances in Physical Organic Chemistry, vol. 17,
ch. 3, 1980; (b) L. Mandolini, in Advances in Physical Organic
Chemistry, vol. 22, ch. 1, 1986.
The free acid (31 mg, 0.114 mmol) was dissolved in ethyl acetate
and extracted with aqueous sodium hydrogen carbonate (9.1 mg,
0.108 mmol) and the resulting aqueous layer was lyophilised to
leave as a dark green solid (27.4 mg, 0.093 mmol, 82%): dH
(270 MHz, D2O) 1.59 (s, 3H, a-CH3), 1.72 (s, 3H, b-CH3), 3.64
(s, 2H, CH2), 3.76 (s, 3H, OCH3), 4.29 (s, 1H, H-3).
8 J. W. Grant and T. P. Smyth, J. Org. Chem., 2004, 69, 7965–7970.
9 (a) J. D. Buynak, B. Geng, B. Bachmann and L. Hua, Bioorg. Med.
Chem. Lett., 1995, 5, 1513–1518; (b) J. D. Buynak, A. S. Rao and S.
Nidamarthy, Tetrahedron Lett., 1998, 39, 4945–4946; (c) J. D. Buynak,
WO Pat. 99/33837, 1999; (d) J. D. Buynak, K. Wu, B. Bachmann, D.
Khasnis, L. Hua, H. K. Nguyen and C. L. Carver, J. Med. Chem.,
1995, 38, 1022–1034; (e) J. D. Buynak, V. R. Doppalapudi and G.
Adam, Bioorg. Med. Chem. Lett., 2000, 10, 853–857.
Acknowledgements
10 See data in the ESI†.
We are grateful to R. O’Dwyer of the University of Limerick
for preparation of the b-lactamase-producing E. coli culture
and for assistance with the fluorescence measurements, and to
C. J. Schofield, B. Lienard and W. Sobey of the University of
Oxford, UK, and to L. Horsfall and J.-M. Fre`re of the Universite´
de Lie`ge, Belgium for the antibiotic and b-lactamase inhibition
assays. We are grateful to D. Rai of the CSCB, University College
Dublin for the HRMS, and to IRCSET for financial support
(C.C.R.).
11 (a) N. Tsuji, K. Nagashima, M. Kobayashi, J. Shoji, T. Kato, Y. Terui,
H. Nakai and M. Shiro, J. Antibiot., 1982, 35, 24–31; (b) Y. Kimura, K.
Motokawa, H. Nagata, Y. Kameda, S. Matsuura, M. Mayama and T.
Yoshida, J. Antibiot., 1982, 35, 32–38; (c) K. Murakami, M. Doi and
T. Yoshida, J. Antibiot., 1982, 35, 38–45.
12 One unit hydrolyzes 1.0 lmole of benzylpenicillin per min at pH 7.0 at
25 ◦C.
13 The E. coli strain Top10 (Invitrogen) containing the plasmid pIGXH,
expressing an ampicillin resistant gene, was used. This material
was prepared by R. O’Dwyer in the Department of Chemical and
Environmental Sciences, University of Limerick.
14 See ref. 10 in: B. E. Maryanoff, M. J. Constanzo, S. O. Nortey, M. N.
Greco, R. P. Shank, J. J. Schupsky, M. P. Ortegon and J. L. Vaught,
J. Med. Chem., 1998, 41, 1315–1343.
15 (a) T. Ritter, K. Stanek, I. Larrosa and E. M. Carreira, E. M., Org.
Lett., 2004, 6, 1513–1514; (b) A. F. Barrero, J. E. Oltra, M. Alvarez and
A. Rosales, J. Org. Chem., 2002, 67, 5461–5469.
References
1 T. A. Murphy, L. E. Catto, S. E. Halford, A. T. Hadfield, W. Minor, T. R.
Walsh and J. Spencer, J. Mol. Biol., 2006, 357, 890–903 and references
therein.
2 (a) C. H. O’Callaghan, R. B. Sykes and S. E. Staniforth, Antimicrob.
Agents Chemother., 1976, 245–248; (b) D. Greenwood and F. O’Grady,
Antimicrob. Agents Chemother., 1976, 249–252; (c) S. Mobashery and
M. Johnson, J. Biol. Chem., 1986, 261, 7879–7887; (d) S. Mobashery
and M. Johnson, Biochemistry, 1987, 26, 5878–5884; (e) T. P. Smyth,
M. E. O’Donnell, M. J. O’Connor and J. O. St Ledger, Tetrahedron,
2000, 56, 5699–5707 and references therein.
16 The screening assays were carried out at the Chemistry Re-
search Laboratory, University of Oxford, UK, and at the Centre
d’Inge´nierie des Proteines, Universite´ de Lie`ge, Belgium, under the
supervision of Prof. C. J. Schofield, and Prof. J.-M. Fre`re, res-
pectively.
17 For details of sulfoxide isomer assignment see: J. B. Doherty, et al.,
J. Med. Chem., 1990, 33, 2513–2521.
168 | Org. Biomol. Chem., 2007, 5, 160–168
This journal is
The Royal Society of Chemistry 2007
©