accurate determination of the respective lifetime. Its estimated
value is ∼ 800 ps.
References
1 C. D. Gutsche, Calixarenes Revisited, Monographs in Supra-
molecular Chemistry; Royal Society of Chemistry, Cambridge,
1998.
2 D. Diamond and M. A. McKervey, Chem. Soc. Rev., 1996,
15.
3 (a) A. Ikeda and S. Shinkai, J. Am. Chem. Soc., 1994, 116, 3102;
(b) N. J. van der Veen, R. J. M. Egberink, J. F. J. Engbersen,
F. J. C. M. van Veggel and D. N. Reinhoudt, Chem. Commun., 1999,
681; (c) G. Arena, A. Contino, E. Longo, D. Sciotto and G. Spoto,
J. Chem. Soc., Perkin Trans. 2, 2001, 2287.
4 (a) R. Arnecke, V. Bohmer, R. Cacciapaglia, A. D. Cort and
L. Mandolini, Tetrahedron, 1997, 53, 4901; (b) K. Murayama and
K. Aoki, Chem. Lett., 1998, 301; (c) S. Roelens and R. Torriti,
J. Am. Chem. Soc., 1998, 120, 12443.
As pointed out in our former study, the fluorescence decay of
cation 1؉ has an intramolecular and an intermolecular
channel.21 The predominant intramolecular process is probably
the conversion of the electronic excitation energy into the
excitation of the closely leveled internal rotation of the diethyl-
amino group. The intermolecular channel is of significance in
protic solvents, as it is associated with a fast excited state proton
transfer. In the case of 1ؒ2, the longer decay of the complex,
compared to that of pure 1, may be due to the rigidifying of the
diethylamino group by the hydrogen bonds between the host
and the guest. In contrast, in 1؉ؒ2 and particularly in 1؉ؒ2؊, the
decay of the excited 1؉ moiety becomes faster than that of
the uncomplexed 1؉ cation, possibly via proton transfer from
the guest.
5 S. Shinkai, S. Mori, T. Tsubaki, T. Sone and O. Manabe, Tetrahedron
Lett., 1984, 25, 5315.
6 T. Arimura, T. Nagasaki, S. Shinkai and T. Matsuda, J. Org. Chem.,
1989, 54, 3766.
7 S. Shinkai, H. Kawabata, T. Arimura and T. Matsuda, J. Chem. Soc.,
Perkin Trans. 1, 1989, 1073.
8 T. Nagasaki, Y. Tajiri and S. Shinkai, Recl. Trav. Chim. Pays-Bas,
1993, 112, 407.
9 C.-H. Tung and H.-F. Ji, J. Chem. Soc., Perkin Trans. 2, 1997,
185.
10 M. Inouye, K. Hashimoto and K. Isagawa, J. Am. Chem. Soc., 1994,
116, 5517.
11 K. N. Koh, K. Araki, A. Ikeda, H. Otsuka and S. Shinkai,
J. Am. Chem. Soc., 1996, 118, 755.
12 I. Garcia-Ochoa, M.-A. D. Lopez, M. H. Vinas, L. Santos,
E. M. Ataz, F. Amat-Guerri and A. Douhal, Chem. Eur. J., 1999, 5,
897.
13 Y. Zhang, R. A. Agbaria and I. M. Warner, Supramol. Chem., 1997,
8, 309.
14 Y. Zhang, T. H. Pham, M. S. Pena, R. A. Agbaria and I. M. Warner,
Appl. Spectrosc., 1998, 52, 952.
15 Y. Liu, B.-H. Han and Y.-T. Chen, J. Org. Chem., 2000, 65,
6227.
16 S. Shinkai, K. Araki and O. Manabe, J. Chem. Soc., Chem.
Commun., 1998, 187.
17 M. Nishida, D. Ishii, I. Yoshida and S. Shinkai, Bull. Chem. Soc.
Jpn., 1997, 70, 2131.
18 A. Douhal, J. Phys. Chem., 1994, 98, 13131.
19 A. Grofcsik and W. J. Jones, J. Chem. Soc., Faraday Trans., 1992, 88,
1101.
Conclusion
The combined application of steady-state absorption and fluor-
escence spectroscopy and of fluorescence lifetime measure-
ment, to identify the supramolecular products and to determine
the equilibrium constants for the reactions occurring in this
model system may be helpful in the analysis of many related
systems, where proton transfer between the host and the guest
may take place. In addition, knowledge of the properties of the
Nile Blue–calixresorcinarene complexes in apolar solvents may
be interesting in relation to the applications of this dye in more
complex apolar environments. This is the case when Nile
Blue salts (and in particular, the salts of its lipophilised deriv-
atives) are employed as indicator dyes in optical sensors with
hydrophobic polymer matrices;31 or when they are applied in
photodynamic therapy studies, as special photosensitizers
which localize in the lysosome of tumor cells.32
Experimental
Materials
Nile Blue A perchlorate was purchased from Fluka and used as
received. Its basic form, 1, was prepared by precipitating it from
the aqueous solution of 1؉-perchlorate with NaOH, extracting
with CH2Cl2 and evaporating the solvent. Calixresorcinarene 2
was prepared through the cyclooligomerisation of resorcinol
and dodecanal as described in the literature.33
20 A. Grofcsik, M. Kubinyi and W. J. Jones, J. Mol. Struct., 1995, 348,
197.
21 A. Grofcsik, M. Kubinyi and W. J. Jones, Chem. Phys. Lett., 1996,
250, 261.
22 A. Grofcsik, M. Kubinyi, A. Ruzsinszky, T. Veszprémi and
W. J. Jones, J. Mol. Struct., 2000, 555, 15.
23 K. Kobayashi, Y. Asakawa, Y. Kikuchi, H. Toi and Y. Aoyama,
J. Am. Chem. Soc., 1993, 115, 2648.
24 M. Krihak, M. T. Murtagh and M. R. Shahriari, J. Sol-Gel Sci.
Technol., 1997, 10, 153.
25 H. Kandori, K. Kemnitz and K. Yoshihara, J. Phys. Chem., 1992,
96, 8042.
26 W. Tao and M. Barra, J. Chem. Soc., Perkin Trans. 2, 1998,
1957.
27 E. Gardini, S. Dellonte, L. Flamingi and F. Barigelletti, Gazz. Chim.
Ital., 1980, 110, 533.
28 G. B. Dutt, S. Doraiswamy, N. Periasamy and B. Venkataraman,
J. Chem. Phys., 1990, 93, 8498.
29 J. Sobek, S. Landgraf and G. Grampp, J. Inf. Rec., 1998, 24,
149.
Instrumentation
All spectroscopic measurements were carried out at 25 ЊC. The
UV–VIS absorption spectra were recorded using a GBC Cintra
10E spectrometer. The fluorescence spectra were taken by using
a Perkin-Elmer LB50 spectrofluorimeter.
Fluorescence lifetimes were measured with the time-
correlated single-photon counting technique. The 404 and 632
nm exciting pulses were provided by two Picoquant diode
lasers, with pulse duration of 60 and 90 ps, respectively. The
emission was collected at a 90Њ angle through an Oriel 0.25 m
monochromator, located in front of a Hamamatsu H5783
photosensor module. The output signal was connected to a
Picoquant Timeharp 100 computer board module (channel
width 36 ps). Data were analyzed by a non-linear least-squares
deconvolution method.
30 S. Landgraf and G. Grampp, Monatsh. Chem., 2000, 131,
839.
31 (a) P. Bühlmann, E. Pretsch and E. Bakker, Chem. Rev., 1998, 98,
1593; (b) J. Lin, Trends Anal. Chem., 2000, 19, 541.
32 (a) J. Morgan, W. R. Potter and A. S. Oseroff, Photochem.
Photobiol., 2000, 71, 747; (b) G. Singh, M. Espiritu, X. Y. Shen,
J. G. Hanlon and A. J. Rainbow, Photochem. Photobiol., 2001, 73,
651.
33 L. M. Tunstad, J. A. Tucker, E. Dalcanale, J. Weiser, J. A. Bryant,
J. C. Sherman, R. C. Helgeson, C. B. Knobler and D. J. Cram,
J. Org. Chem., 1989, 54, 1305.
Acknowledgements
The authors are grateful to the Hungarian Science Research
Foundation (grant numbers T 25561 and T 34990) for financial
support.
J. Chem. Soc., Perkin Trans. 2, 2002, 1784–1789
1789