C O M M U N I C A T I O N S
temperature-dependent spectroscopic change in the temperature
range +10 to +50 °C with an intense green color7 persisting
throughout.8
In conclusion, we have demonstrated the operation of simple
molecular switches, based on self-complexing donor-acceptor pairs.
The switching can be effected thermally (14+) as an equilibrium
event and electrically (24+) as a reaction process. In addition to the
obvious applications 14+ and 24+ could find as thermo- and
electroswitches, the thermochromism associated with equilibrium
1 could lead to compounds such as 1‚4PF6 having futures as
imaging and sensing materials.
Although temperature is more or less ineffective in controlling
the movement of the TTF arm in SC-24+, both chemical and
electrochemical methods work well. The reason is that molecular
recognition between a TTF donor and a CBPQT4+ acceptor can be
turned “off” by the oxidation of the TTF unit to a charged speciess
either TTF•+ or TTF2+sand “on” by their reduction back to the
neutral form. The chemical redox cycle has been monitored (Figure
2) by 1H NMR spectroscopy at 253 K in CD3COCD3 solution. The
TTF unit in SC-2‚4PF6 is observed (Figure 2a) to be a 2:3 mixture
(δ ) 6.0-7.0 ppm) of cis/trans-isomers. The 1H NMR spectrum is
characteristic of a conformation for SC-24+ with average Cs
symmetry. No resonances are detected for UC-2‚4PF6. Upon
addition of 2 equiv of tris(p-bromophenyl)aminium hexachloroan-
timonate9 into the CD3COCD3 solution of 2‚4PF6, a much simpler
spectrum (Figure 2b) is observed, indicating that, upon oxidation,
the TTF2+ dication no longer resides inside the CBPQT4+ cavity
and its protons resonate at δ ) 9.83 ppm. The remainder of the
spectrum is commensurate with the UC-26+ conformation having
average C2V symmetry. When Zn dust is added to the NMR tube,
the original spectrum is regenerated (Figure 2c), indicating a return
to the SC-24+ conformation with the neutral TTF unit back inside
the cavity of the CBPQT4+ ring.
Acknowledgment. This work was supported by the Defense
Advanced Research Projects Agency (DARPA). Some of the
compound characterizations were supported by the National Science
Foundation under equipment Grant No. CHE-9974928 and CHE-
0092036.
Supporting Information Available: Experimental details and
spectroscopic data of 1‚4PF6 and 2‚4PF6. This material is available
References
(1) For some recent examples, see: (a) Shinkai, S.; Ishihara, M.; Ueda, K.;
Manabe, O. J. Chem. Soc., Perkin Trans. 2 1985, 511-518. (b) Corradini,
R.; Dossena, A.; Marchelli, R.; Panagia, A.; Sartor, G.; Saviago, M.;
Lombardi, A.; Pavone, V. Chem. Eur. J. 1996, 2, 373-381. (c) Ashton,
P. R.; Ballardini, R.; Balzani, V.; Boyd, S. E.; Credi, A.; Gandolfi, M.
T.; Go´mez-Lo´pez, M.; Iqbal, S.; Philp, D.; Preece, J. A.; Prodi, L.; Ricketts,
H. G.; Stoddart, J. F.; Tolley, M. S.; Venturi, M.; White, A. J. P.; Williams,
D. J. Chem. Eur. J. 1997, 3, 152-170. (d) Ashton, P. R.; Go´mez-Lo´pez,
M.; Iqbal, S.; Preece, J. A.; Stoddart, J. F. Tetrahedron Lett. 1997, 38,
3635-3638. (e) Nielsen, M. B.; Hansen, J. G.; Becher, J. Eur. J. Org.
Chem. 1999, 2807-2815. (f) Balzani, V.; Ceroni, P.; Credi, A.; Go´mez-
Lo´pez, M.; Hamers, C.; Stoddart, J. F.; Wolf, R. New J. Chem. 2001, 25,
25-31.
(2) (a) Kelly, T. R.; De Silva, H.; Silva, R. A. Nature 1999, 401, 150-152.
(b) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem.,
Int. Ed. 2000, 39, 3348-3391. (c) Harada, A. Acc. Chem. Res. 2001, 34,
456-464. (d) Schalley, C. A.; Beizai, K.; Vo¨gtle, F. Acc. Chem. Res.
2001, 34, 465-476. (e) Collin, J.-P.; Dietrich-Buchecker, C.; Gavin˜a, P.;
Jime´nez-Molero, M. C.; Sauvage, J.-P. Acc. Chem. Res. 2001, 34, 477-
487. (f) Raehm, L.; Sauvage, J.-P. Struct. Bonding 2001, 99, 55-78. (g)
Koumura, N.; Geertsema, E. M.; van Gelder, M. B.; Meetsma, A.; Feringa,
B. L. J. Am. Chem. Soc. 2002, 124, 5037-5051. (h) Stainer, C. A.;
Alderman, S. J.; Claridge, T. D. W.; Anderson, H. L. Angew. Chem., Int.
Ed. 2002, 41, 1769-1772. (i) Leigh, D. A.; Wong, J. K. Y.; Dehez, F.;
Zerbetto, F. Nature 2003, 424, 174-179. (j) Heath, J. R.; Ratner, M. A.
Physics Today 2003, May, 43-49. (k) Balzani, V.; Venturi, M.; Credi,
A. Molecular DeVices and Machines: A Journey into the Nano World,
Wiley-VCH: Weinheim, Germany, 2003. (l) Flood, A. H.; Ramirez, R.
J. A.; Deng, W.-Q.; Muller, R. P.; Goddard III, W. A.; Stoddart, J. F.
Aust. J. Chem. 2004, 57, 301-322. (m) Badjic, J. D.; Balzani, V.; Credi,
A.; Silvi, S.; Stoddart, J. F. Science 2004, 303, 1845-1849. (n) Hawthorne,
F.; Zink, J. I.; Skelton, J. M.; Bayer, M. J.; Liu, C.; Livshits, E.; Baer, R.;
Neuhauser, D. Science 2004, 303, 1849-1851. (o) Zheng, X.; Mulcahy,
M. E.; Horinek, D.; Galeotti, F.; Magnera, T. F.; Michl, J. J. Am. Chem.
Soc. 2004, 126, 4540-4542.
1
Figure 2. Partial H NMR spectra of 2‚4PF6 recorded in CD3COCD3 at
(3) Asakawa, M.; Dehaen, W.; L’abbe´, G.; Menzer, S.; Nouwen, J.; Raymo,
F. M.; Stoddart, J. F.; Williams, D. J. J. Org. Chem. 1996, 61, 9591-
9595.
253 K (a) before oxidation, (b) after addition of 2 equiv of tris(p-
bromophenyl)aminium hexachloroantimonate, and (c) after addition of Zn
dust as a reductant. The resonances indicated by an asterisk arise from the
oxidant.
(4) Hunter, C. A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1584-1586.
(5) Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. The CH/π Interaction
Wiley-VCH: New York, 1998.
(6) (a) Houk, K. N.; Menzer, S.; Newton, S. P.; Raymo, F. M.; Stoddart, J.
F.; Williams, D. J. J. Am. Chem. Soc. 1999, 121, 1479-1487. (b) Desiraju,
G. R. Acc. Chem. Res. 2002, 35, 565-573.
Cyclic voltammetry (CV) of 2‚4PF6 in MeCN reveals its
electrochemical switching behavior associated with the TTF-based
oxidations.10 At a scan rate of 1000 mV s-1, the CV displays (Figure
1b) only one two-electron anodic peak at +0.91 V vs SCE, together
with the two single-electron cathodic peaks on the return sweep.
The behavior differs from that of the control 3 (Figure 1b), which
displays two reversible, well-separated one-electron oxidation
processes at +0.36 and +0.70 V vs SCE. The CV indicates that
the TTF arm in SC-24+ undergoes oxidative dethreading in concert
with the direct production of the TTF2+ dicationic form and that it
rethreads following formation of the charge-neutral TTF unit.
(7) Asakawa, M.; Ashton, P. R.; Balzani, V.; Credi, A.; Hamers, C.;
Mattersteig, G.; Montalti, M.; Shipway, A. N.; Spencer, N.; Stoddart, J.
F.; Tolley, M. S.; Venturi, M.; White, A. J. P.; Williams, D. J. Angew.
Chem., Int. Ed. 1998, 37, 333-337.
(8) The stronger donor-acceptor interaction between TTF and CBPQT4+ is
believed to be responsible for the weaker temperature dependence of 2‚
4PF6.
(9) Tseng, H.-R.; Vignon, S. A.; Stoddart, J. F. Angew. Chem., Int. Ed. 2003,
42, 1491-1495.
(10) Balzani, V.; Credi, A.; Mattersteig, G.; Matthews, O. A.; Raymo, F. M.;
Stoddart, J. F.; Venturi, M.; White, A. J. P.; Williams, D. J. J. Org. Chem.
2000, 65, 1924-1936.
JA048164T
9
J. AM. CHEM. SOC. VOL. 126, NO. 30, 2004 9151