C-O Bon d F r a gm en ta tion of 4-P icolyl- a n d N-Meth yl-4-p icolin iu m
Ester s Tr igger ed by P h otoch em ica l Electr on Tr a n sfer
Chitra Sundararajan and Daniel E. Falvey*
Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021
falvey@umd.edu
Received March 26, 2004
Photochemical reduction of several 4-picolyl- and N-methyl-4-picolinium esters was examined using
product analysis, laser flash photolysis, and fluorescence quenching. It is demonstrated that the
radical (anions) formed in these reactions readily fragment to yield a carboxylic acid and a
4-pyridylmethyl radical intermediate. The high chemical and quantum yields observed for these
photoreactions suggests that these esters can be used as photolabile protecting groups.
In tr od u ction
protecting groups are important in applications such as
photolithographic fabrication of DNA chips,12-14 photo-
regulation of proteins and cellular signaling pathways,15-17
time-resolved X-ray crystallography,18 and solid-phase
peptide and nucleotide synthesis.14,19 Photolabile groups
are also being used in multistep organic syntheses20,21
and in biological systems.22,23
A specific interest in photoremovable protecting groups
(PRPGs) has lead us to explore PET-triggered C-O bond
scission in phenacyl esters (1, Scheme 1). It was dem-
onstrated that the phenacyl group could be released with
high efficiencies and with excellent chemical yields of the
released substrate.24,25 A particularly attractive feature
of this PET-based PRPG system is that the light absorp-
tion step is decoupled from the bond-breaking step.
Through choice of an appropriate PET sensitizer, it is,
in principle, possible to make the system responsive to
any desired photolysis wavelength. Because the same
protecting group anion is generated with each sensitizer,
the kinetics and mechanism of the release step remain
constant. This contrasts with more conventional PRPG
systems, such as those based on nitrobenzyl, or benzoin
Photoinduced electron transfer (PET) processes have
attracted the interest of a generation of chemists. Previ-
ous work has elucidated many of the factors that control
the rates of these reactions.1,2 Therefore, many current
efforts are aimed at identifying and demonstrating useful
applications of these processes. Applications include solar
energy conversion,3-5 photolithography,6 molecular elec-
tronics,7,8 and the design of novel synthetic transforma-
tions. With regard to the latter, it has long been recog-
nized that PET is capable of generating high-energy
radical and radical ion pairs. Such radical pairs are
interesting because they are often capable of undergoing
bond-forming or bond-fragmentation reactions that are
difficult to carry out using conventional techniques. For
example, Mariano and others have explored PET trig-
gered C-Si fragmentations.9,10 These reactions form
nucleophilic R-amino radicals, which were demonstrated
to be useful in the formation of new carbon-carbon
bonds. Other examples include the reactions of phthal-
imide derivatives triggered by PET from an alkyl-
tethered donor group to the phthalimide chromophore.11
We have had a longstanding interest in applying
photoinduced electron-transfer reactions to the controlled
photorelease of functional molecules. Photoreleasable
(12) Fodor, S. P. A.; Read, J . L.; Pirrung, M. C.; Stryer, L.; Lu, A.
T.; Solas, D. Science (Washington, DC) 1991, 251, 767-773.
(13) Pirrung, M. C. Chem. Rev. 1997, 97, 473-488.
(14) Pirrung, M. C.; Fallon, L.; McGall, G. J . Org. Chem. 1998, 63,
241-246.
(1) Gould, I. R.; Farid, S. Acc. Chem. Res. 1996, 29, 522-528.
(2) Karki, S. B.; Dinnocenzo, J . P.; Farid, S.; Goodman, J . L.; Gould,
I. R.; Zona, T. A. J . Am. Chem. Soc. 1997, 119, 431-432.
(3) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2001, 34,
40-48.
(15) Curley, K.; Lawrence, D. S. J . Am. Chem. Soc. 1998, 120, 8573-
8574.
(16) Wood, J . S.; Koszelak, M.; Liu, J .; Lawrence, D. S. J . Am. Chem.
Soc. 1998, 120, 7145-7146.
(17) Pollit, S. K.; Schultz, P. G. Angew. Chem., Int. Ed. 1998, 37,
2104-2107.
(4) Sutin, N. J . Photochemistry 1979, 10, 19.
(5) Maverick, A. W.; Gray, H. B. Pure Appl. Chem. 1980, 52, 2339.
(6) Lockhart, D. J .; Dong, H.; Byrne, M. C.; Follitie, M. T.; Gallo,
M. V.; Chee, M. S.; Mittmann, M.; Wang, C.; Kobayashi, M.; Horton,
H.; Brown, E. L. Nat. Biotechnol. 1996, 14, 1675-1680.
(7) Lukas, A. S.; Bushard, P. J .; Wasielewski, M. R. J . Am. Chem.
Soc. 2001, 123, 2440-2441.
(8) Hayes, R. T.; Wasielewski, M. R.; Gosztola, D. J . Am. Chem. Soc.
2000, 122, 5563-5567.
(9) Yoon, U. C.; J in, Y. X.; Oh, S. W.; Park, C. H.; Park, J . H.;
Campana, C. F.; Cai, X.; Duesler, E. N.; Mariano, P. S. J . Am. Chem.
Soc. 2003, 125, 10664-10671.
(18) Schlichting, I.; Almo, S. C.; Rapp, G.; Wilson, K.; Petratos, K.;
Lentfer, A.; Wittinghofer, A.; Kabsch, W.; Petsko, G.; Goody, R. S.
Nature 1990, 345, 309-315.
(19) Gallop, M. A.; Barrett, R. W.; Dower, W. J .; Fodor, S. P. A.;
Gordon, E. M. J . Med. Chem. 1994, 37, 1233-1251.
(20) Pillai, V. N. R. Synthesis 1980, 1-26.
(21) Pillai, V. N. R. Organic Photochemistry; Marcel Dekker, Inc.:
New York, 1987; Vol. 9.
(22) Nerbonne, J . M.; Richard, S.; Nargeot, J .; Lester, H. A. Nature
1984, 310, 74-76.
(23) McCray, J . A.; Herbette, L.; Kihara, T.; Trentham, D. R. Proc.
Natl. Acad. Sci. U.S.A 1980, 77, 7273-7241.
(24) Banerjee, A.; Lee, K.; Yu, Q.; Fang, A. G.; Falvey, D. E.
Tetrahedron Lett. 1998, 39, 4635-4638.
(10) Yoon, U. C.; Oh, S. W.; Lee, J . H.; Park, J . H.; Kang, K. T.;
Mariano, P. S. J . Org. Chem. 2001, 66, 939-943.
(11) Griesbeck, A. G.; Heinrich, T.; Oelgemoller, M.; Lex, J .; Molis,
A. J . Am. Chem. Soc. 2002, 124, 10972-10973.
(25) Banerjee, A.; Falvey, D. E. J . Org. Chem. 1997, 62, 6245-6251.
10.1021/jo049501j CCC: $27.50 © 2004 American Chemical Society
Published on Web 07/17/2004
J . Org. Chem. 2004, 69, 5547-5554
5547