D. Kogelnig et al. / Tetrahedron Letters 49 (2008) 2782–2785
2785
where hard water with high calcium and magnesium con-
centrations is present.
versus temperature charts of the three synthesized ionic liq-
uids and Aliquat336Ò as precursor are presented. Section
II: experimental part including applied analytical methods
(Flame-AAS and IC)) associated with this article can be
Compared to other cadmium extracting agents, working
well under neutral conditions, on which research was
recently published,11–15 [A336][TS] displays some consider-
able advantages: the selectivity for cadmium is well compa-
rable to calix[4]arene derivates bearing pyridinium or sulfur-
containing units in the presence of alkali metal ions.11–13
The extracting efficiency of [A336][TS] (>99.9%) lies even
above these compounds and its use may be regarded to as
more sustainable, as no volatile and flammable organic sol-
vents are needed. Other environmental friendly, low-cost
biomaterials, for example, biofilm covered granular acti-
vated carbon,15 or crab shells,14 showing adsorption of
organic residues or slow sorption kinetics, respectively, are
outnumbered by [A336][TS] displaying an undisturbed fast
metal uptake and a high affinity for cadmium under neutral
conditions, even in a complex natural matrix.
Current investigations deal with the affinity of
[A336][TS] for other metals. In addition, the elucidation
of the reaction mechanism as well as the design of a suit-
able recycling process for a reuse of the applied ILs by
metal stripping is of considerable interest.
In conclusion, we demonstrated the successful prepara-
tion of three new hydrophobic ammonium ionic liquids
from Aliquat 336Ó as a cation source and Bronsted acids
as anion sources. Moreover, preliminary investigations
have shown that the implementation of functional groups
(e.g., thiol) onto the anion is leading to task specificity in
ionic liquids usable as extracting agents.
References and notes
1. For reviews, see: (a) Plechkova, N. V.; Seddon, K. R. In Methods and
Reagents for Green Chemistry; Perosa, A., Zecchini, F., Eds.; John
Wiley Sons: New York, 2007; pp 105–130; (b) Kulkarni, P. S.;
Branco, L. C.; Crespo, J. G.; Afonso, C. A. M. Chem.-Eur. J. 2007,
13, 8470–8477; (c) Lee, S. Chem. Commun. 2006, 1049–1063; (d)
Baudequin, C.; Baudoux, J.; Levillain, J.; Cahard, D.; Gaumont, A.-
C.; Plaquevent, J.-C. Tetrahedron: Asymmetry 2003, 14, 3081–3093;
(e) Ionic Liquids in Synthesis; Wasserscheid, P., Welton, T., Eds.;
Wiley-VCH: Weinheim, Germany, 2003; (f) Green Industrial Applica-
tions of Ionic Liquids; Rogers, R. D., Seddon, K. R., Volkov, S., Eds.;
NATO Science Series, II: Mathematics Physics and Chemistry;
Kluwer Academic: Dordrecht, 2002; Vol. 92, (g) Huddleston, J. G.;
Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.;
Rogers, R. D. Green Chem. 2001, 3, 156–164.
2. Germani, R.; Mancini, M. V.; Savelli, G.; Spreti, N. Tetrahedron Lett.
2007, 48, 1767–1769.
3. Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Mayton, R.; Sheff, S.;
Wierzbicki, A.; Davis, J. H., Jr.; Rogers, R. D. Chem. Commun. 2001,
1, 135–136.
4. Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Mayton, R.; Sheff, S.;
Wierzbicki, A.; Davis, J. H., Jr.; Rogers, R. D. Environ. Sci. Technol.
2002, 36, 2523–2529.
5. Holbrey, J. D.; Visser, A. E.; Spear, S. K.; Reichert, W. M.;
Swatloski, R. P.; Broker, G. A.; Rogers, R. D. Green Chem. 2003, 5,
129–135.
6. Ouadi, A.; Gadenne, B.; Hesemann, P.; Moreau, J. J. E.; Billard, I.;
Gaillard, C.; Mekki, S.; Moutiers, G. Chem.-Eur. J. 2006, 12, 3074–
3081.
7. Papaiconomou, N.; Lee, J.-M.; Salminen, J.; Stosch, M. v.; Prausnitz,
8. Mikkola, J. P.; Virtanen, P.; Sjo¨holm, R. Green Chem. 2006, 8, 250–
255.
9. Chloride contents of ionic liquids were measured by Theiner, J.
Microanalytical Laboratory, Institute of Physical Chemistry, Univer-
sity of Vienna.
10. Kulkarni, P. S.; Branco, L. C.; Crespo, J. G.; Nunes, M. C.;
Raymundo, A.; Afonso, C. A. M. Chem. Eur. J. 2007, 13, 8478–8488.
11. Bilgin, A.; Ertem, B.; Ag˘in, F. D.; Go¨k, Y.; Karsliog˘lu, S. Polyhedron
2006, 25, 3165–3172.
Due to our results, we are convinced that the presented
deprotonation-metathesis route may be an elegant way for
the preparation of further numerous hydrophobic Aliquat
336 Ó-based ILs with functionalities appended to the anion.
Acknowledgements
The authors are grateful to Florian Biba for performing
TGA measurements and the Austrian Federal Ministry of
Agriculture, Forestry, Environment and Water Manage-
ment (Project No. A600702) for financial support.
12. Tabakci, M.; Memon, S.; Yilmaz, M. Tetrahedron 2007, 63, 6861–
6865.
Supplementary data
13. Yilmaz, A.; Yilmaz, M.; Bartsch, R. J. Macromol. Sci., Pure Appl.
Chem. 2006, 43, 637–645.
Supplementary data (Section I: preparation and charac-
terization of ionic liquids including general synthesis route
and applied characterization methods. Additionally 1H and
13C NMR shifts, FTIR and ESI/MS spectra and density
´
14. Barriada, J. L.; Herrero, R.; Prada-Rodrıguez, D.; Sastre de Vicente,
M. E. J. Chem. Technol. Biotechnol. 2007, 82, 39–46.
15. Dianati-Tilaki, R. A.; Mahvi, A. H.; Shariat, M.; Nasseri, S. Iran. J.
Publ. Health 2004, 33, 43–52.