3
Bisreactive thiophene dioxides 7k and 7l were
This work was supported by Platform for Drug
Discovery, Informatics, and Structural Life Science of MEXT
and AMED, Japan; JSPS KAKENHI Grant Numbers
15H03118 (B; T.H.), 16H01133 (Middle Molecular Strategy;
T.H.), 26350971 (C; S.Y.); Suntory Foundation for Life
Sciences (S.Y.); Naito Foundation (S.Y.).
successfully applied to sequential conjugation (Schemes 3 and
4). For example, copper-catalyzed azide–alkyne cycloaddition
of 7k with benzyl azide (18) resulted in the formation of
triazole 7m, leaving the chloro groups and the thiophene
dioxide moiety untouched (Scheme 3). Subsequent reaction
between thiophene dioxide 7m and BCN derivative 2
furnished the cycloadduct 19 in high yield. Furthermore, a
simple one-pot operation involving the Staudinger–Bertozzi
ligation of azide-functionalized thiophene dioxide 7l with
phosphine 20, followed by cycloaddition between the
resulting amide 7n and 2 afforded the conjugate 21 in high
yield (Scheme 4). These results clearly indicate that thiophene
dioxides 7k and 7l would serve as efficient platforms for
preparing a variety of compounds, including multifunctional
molecules, from simple modules.
10.1246/cl.xxxxxx.
References and Notes
1
a) C. Tassa, S. Y. Shaw, R. Weissleder, Acc. Chem. Res. 2011, 44,
842. b) R. A. A. Fostera, M. C. Willis, Chem. Soc. Rev. 2013, 42,
63. c) S. Mayer, K. Lang, Synthesis 2017, 49, 830.
2
a) M. L. Blackman, M. Royzen, J. M. Fox, J. Am. Chem. Soc. 2008,
130, 13518. b) N. K. Devaraj, R. Weissleder, S. A. Hilderbrand,
Bioconjugate Chem. 2008, 19, 2297. c) M. R. Karver, R.
Weissleder, S. A. Hilderbrand, Bioconjugate Chem. 2011, 22, 2263.
For reviews, see: a) H. C. Kolb, M. G. Finn, K. B. Sharpless,
Angew. Chem., Int. Ed. 2001, 40, 2004. b) E. M. Sletten, C. R.
Bertozzi, Angew. Chem., Int. Ed. 2009, 48, 6974. c) W. Xi, T. F.
Scott, C. J. Kloxin, C. N. Bowman, Adv. Funct. Mater. 2014, 24,
2572.
For selected examples, see: a) J. A. Codelli, J. M. Baskin, N. J.
Agard, C. R. Bertozzi, J. Am. Chem. Soc. 2008, 130, 11486. b) X.
Ning, J. Guo, M. A. Wolfert, G.-J. Boons, Angew. Chem., Int. Ed.
2008, 47, 2253. c) J. Dommerholt, S. Schmidt, R. Temming, L. J.
A. Hendriks, F. P. J. T. Rutjes, J. C. M. van Hest, D. J. Lefeber, P.
Friedl, F. L. van Delft, Angew. Chem., Int. Ed. 2010, 49, 9422. d) R.
Ni, N. Mitsuda, T. Kashiwagi, K. Igawa, K. Tomooka, Angew.
Chem., Int. Ed. 2014, 54, 1190.
BnN3 18
(1.8 equiv)
3
4
(MeCN)4CuBF4
(5 mol %)
TBTA
O
O
N
N
O
N
O
N
(5 mol %)
Cl
Cl
N
N
N
O
O
O
O
CH2Cl2
rt, 17 h
S
S
Bn
7m
94%
Cl
Cl
7k
Cl
Cl
2 (1.1 equiv)
MeOH
rt, 17 h
O
N
N
N
N
O
N
Cl
N
Bn
N
H
N
N
OH
3
Bn
TBTA
5
a) W. Chen, D. Wang, C. Dai, D. Hamelberg, B. Wang, Chem.
Commun. 2012, 48, 1736. b) Y. Liang, J. L. Mackey, S. A. Lopez,
F. Liu, K. N. Houk, J. Am. Chem. Soc. 2012, 134, 17904. c) D.
Wang, E. Viennois, K. Ji, K. Damera, A. Draganov, Y. Zheng, C.
Dai, D. Merlin, B. Wang, Chem. Commun. 2014, 50, 15890. d) A.
Borrmann, O. Fatunsin, J. Dommerholt, A. M. Jonker, D. W. P. M.
Löwik, J. C. M. van Hest, F. L. van Delft, Bioconjugate Chem.
2015, 26, 257. e) D. N. Kamber, Y. Liang, R. J. Blizzard, F. Liu, R.
A. Mehl, K. N. Houk, J. A. Prescher, J. Am. Chem. Soc. 2015, 137,
8388. f) K. A. Horner, N. M. Valette, M. E. Webb, Chem. Eur. J.
2015, 21, 14376.
Cl
H
Cl
19
92%
Scheme 3. Sequential conjugation using 7k via copper-catalyzed Huisgen
reaction with 18 followed by the Diels–Alder reaction with 2.
CO2Me
PPh2
O
O
20
(1.5 equiv)
N
N
Cl
H
N
Cl
N
O
N
N3
O
O
O
O
S
THF, H2O
(10/1)
rt, 24 h
S
7n
6
7
a) H. Xu, K. Baidoo, A. J. Gunn, C. A. Boswell, D. E. Milenic, P.
L. Choyke, M. W. Brechbiel, J. Med. Chem. 2007, 50, 4759. b) K.
R. Bhushan, P. Misra, F. Liu, S. Mathur, R. E. Lenkinski, J. V.
Frangioni, J. Am. Chem. Soc. 2008, 130, 17648.
a) D. M. Beal, L. H. Jones, Angew. Chem., Int. Ed. 2012, 51, 6320.
b) V. Vaněk, J. Pícha, B. Fabre, M. Buděšínský, M. Lepšík, J.
Jiráček, Eur. J. Org. Chem. 2015, 3689. c) Y. Sun, X. Ma, K.
Cheng, B. Wu, J. Duan, H. Chen, L. Bu, R. Zhang, X. Hu, Z. Deng,
L. Xing, X. Hong, Z. Cheng, Angew. Chem., Int. Ed. 2015, 54,
5981. d) A.-C. Knall, M. Hollauf, R. Saf, C. Slugovc, Org. Biomol.
Chem. 2016, 14, 10576.
P(O)Ph2
Cl
7l
Cl
Cl
Cl
2 (1.5 equiv)
rt, 24 h
O
N
Cl
Cl
H
N
H
H
N
O
OH
P(O)Ph2
Cl
21
90%
(2 steps, one-pot)
8
9
a) I. Kii, A. Shiraishi, T. Hiramatsu, T. Matsushita, H. Uekusa, S.
Yoshida, M. Yamamoto, A. Kudo, M. Hagiwara, T. Hosoya, Org.
Biomol. Chem. 2010, 8, 4051. b) S. Yoshida, A. Shiraishi, K.
Kanno, T. Matsushita, K. Johmoto, H. Uekusa, T. Hosoya, Sci. Rep.
2011, 1, 82. c) S. Yoshida, Y. Hatakeyama, K. Johmoto, H. Uekusa,
T. Hosoya, J. Am. Chem. Soc. 2014, 136, 13590.
For reviews, see: a) J. Nakayama, Y. Sugihara, Top. Curr. Chem.
1999, 205, 131. For representative examples for reactions of
thiophene dioxides with dienophiles, see: b) R. G. Nelb, II, J. K.
Stille, J. Am. Chem. Soc. 1976, 98, 2834. c) M. S. Raasch, J. Org.
Chem. 1980, 45, 856. d) J. Nakayama, S. Yamaoka, T. Nakanishi,
M. Hoshino, J. Am. Chem. Soc. 1988, 110, 6598. e) J. Nakayama,
R. Hasemi, K. Yoshimura, Y. Sugihara, S. Yamaoka, N. Nakamura,
J. Org. Chem. 1998, 63, 4912. f) D. M. Lemal, J. Org. Chem. 2016,
81, 4931. g) X. Ji, E. M. El-labbad, K. Ji, D. S. Lasheen, R. A. T.
Serya, K. A. Abouzid, B. Wang, Org. Lett. 2017, 19, 818.
a) R. Buyle, H. G. Viehe, Tetrahedron 1969, 25, 3447. b) N. Peša,
C. J. Welch, A. N. Boa, J. Heterocycl. Chem. 2005, 42, 599. c) J.
Scheme 4. Sequential conjugation using 7l via the Staudinger–Bertozzi
ligation with 20 followed by the Diels–Alder reaction with 2.
In summary, we have demonstrated that thiophene
dioxides bearing multiple small halogeno groups react rapidly
with a bicyclononyne derivative.12,13 We have also shown that
electron-deficient thiophene dioxides bearing a connectable
group, which were easily prepared from tetrachlorothiophene
dioxide, served as good bisreactive platform molecules,
enabling efficient sequential conjugation in a simple manner.
Further applications for the facile synthesis of multifunctional
molecules based on the use of thiophene dioxides are
currently under way in our laboratory.
10