Page 3 of 5
Journal of the American Chemical Society
1
2
3
all compatible, giving the desired products in good yields (3j-3l).
Scheme 5. Synthetic Application of δ, ε Vinyl Lactams
4
5
6
7
8
9
Notably, 3l can be converted to , -unsaturated chiral amino acid,
providing a new method to functionalize leucine. Since previous
protocols for functionalizing leucine via radical H-abstraction are
O
Me
O
PG2
NaOMe (5.0 equiv)
MeOH (0.1M), rt.
N
OMe
6c,
9
HN
directed by the amino group,
the use of this amide as a
Me
PG2
, 88%
Drug analogue
directing group in reaction provides a complimentary method to
7a
8
dehydrogenate leucine.
O
Vigabatrin
(brand name Sabril)
To investigate whether this protocol can be extended to the
functionalizations of , -C–H bonds, we prepared amide
substrates 6a-6d containing tertiary C–H bonds at the position
(Table 3). Interestingly, 6a was converted to , -dehydrogenated
-lactam 7a under the standard conditions. Apparently, the olefin
intermediate bearing a radical on the nitrogen center derived from
the initially formed -lactam underwent the facile intramolecular
radical abstraction at the allylic carbon center, leading to the
cyclization product 7a (Scheme 4). The initial formation of the -
lactam instead of the -lactam can be attributed to the higher
reactivity of the tertiary C–H bonds at the -position. The -
methylene C–H bond in 6b is selectively functionalized in the
presence of the -methyl C–H bond. Cyclopentyl (6c) and
cyclohexyl (6d) are also compatible, albeit affording lower yields.
A minor product derived from the radical abstraction of the -
methyl C–H bond was also obtained with the cyclic substrate 7d.
Importantly, these lactam products can be readily converted to
synthetically useful , -desaturated -aminoesters as shown in
Scheme 5. For example, 7a is converted to 8, a compound that is
closely related to Vigabatrin.
OH
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
NH2
In conclusion, we have developed a protocol to functionalize ,
, ε-C–H bonds of aliphatic acids via a radical 1,5 and 1,6-H-
abstraction. The terminal alkyl groups of aliphatic amides are
converted to olefins, amino alcohols and allylic amines.
Acknowledgements. We gratefully acknowledge The Scripps
Research Institute and the NIH (NIGMS, 2R01GM084019) for
financial support.
Supporting Information Available: Experimental procedures and
spectral data for all new compounds (PDF). This material is available
References
(1) For selected examples: (a) Wang, D.-H.; Wasa, M.; Giri, R.; Yu, J.-Q. J.
Am. Chem. Soc. 2008, 130, 7190. (b) Wasa, M.; Engle, K. M.; Yu, J.-Q. J.
Am. Chem. Soc. 2010, 132, 3680. (c) Shabashov, D.; Daugulis, O. J. Am.
Chem. Soc. 2010, 132, 3965. (d) Zhang, S.-Y.; Li, Q.; He, G.; Nack, W.
A.; Chen, G. J. Am. Chem. Soc. 2013, 135, 12135. (e) He, G., Zhang, S.-
Y., Nack, W. A., Li, Q. and Chen, G. Angew. Chem. Int. Ed., 2013,
52: 11124. (f) Nadres, E. T.; Santos, G. I. F.; Shabashov, D.; Daugulis, O.
J. Org. Chem. 2013, 78, 9689. (g) Chen, K.; Hu, F.; Zhang, S.-Q.; Shi, B.-
F. Chem. Sci., 2013, 4, 3906. (h) He, J.; Li, S.-H.; Deng, Y.-Q.; Fu, H.-Y.;
Laforteza, B. N.; Spangler, J. E.; Homs, A.; Yu, J.-Q. Science 2014, 343,
1216. (i) Zhu, R.-Y.; He, J.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 13194.
(j) Xiao, K.-J.; Lin, D. W.; Miura, M.; Zhu, R.-Y.; Gong, W.; Wasa, M.;
Yu, J.-Q. J. Am. Chem. Soc., 2014, 136, 8138.
(2) (a) Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 9886.
(b) He, J.; Wasa, M.; Chan, K.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135,
3387.
(3) For selected examples: (a) Shang, R.; Ilies, L.; Matsumoto, A.; Nakamura,
E. J. Am. Chem. Soc. 2013, 135, 603. (b) Aihara, Y.; Chatani, N. J. Am.
Chem. Soc. 2014, 136, 898. (c) Wang, Z.; Ni, J.; Kuninobu, Y.; Kanai, M.
Angew. Chem. Int. Ed. 2014, 53, 3496. (d) Wu, X.; Zhao, Y.; Ge. H.
Chem. Asian J. 2014, 9, 2736.
Table 3. , , C–H Functionalizations of Aliphatic Amidesa,b
(4) (a) He, G.; Zhang, S.-Y.; Nack, W. A.; Li, Q.; Chen, G. Angew. Chem. Int.
Ed. 2013, 52, 11124. (b) Li, S.-H.; Chen, G.; Feng, C.-G.; Gong, W.; Yu,
J.-Q. J. Am. Chem. Soc. 2014, 136, 5267.
(5) Selected examples of 1,5 and 1,6-H-abstraction initiated by an oxygen
radical: (a) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. J.
Am. Chem. Soc. 1960, 82, 2640. (b) Barton, D. H. R.; Beaton, J. M.;
Geller, L. E.; Pechet, M. M. J. Am. Chem. Soc. 1961, 83, 4076. (c)
Mihailovic, M. L.; Miloradovic, M. Tetrahedron 1966, 22, 723. (d)
Concepcion, J. I.; Francisco, C. G.; Hernandez, R.; Salazar, J. A.; Suarez,
E. Tetrahendron Lett. 1984, 25, 1953. (e) Francisco, C. G.; Herrera, A. J.;
Suarez, E. J. Org. Chem. 2002, 67, 7439. (f) Zhu, H.; Wickenden, J. G.;
Campbell, N. E.; Leung, J. C. T.; Johnson, K. M.; Sammis, G. M. Org.
Lett. 2009, 11, 2019. (g) Kundu, R.; Ball, Z. T. Org. Lett. 2010, 12, 2460.
(6) Selected examples of 1,5 and 1,6-H-abstraction initiated by a nitrogen
radical: (a) Corey, E. J.; Hertler, W. R. J. Am. Chem. Soc. 1960, 82, 1657.
(b) Togo, H.; Hoshina, Y.; Muraki, T.; Nakayama, H.; Yokoyama, M. J.
Org. Chem. 1998, 63, 5193. (c) Reddy, L. R.; Reddy, B. V. S.; Corey, E. J.
Org. Lett., 2006, 8, 2819. (d) Francisco, C. G.; Herrera, A. J.; Martin, A.;
Perez-Martin, I.; Suarez, E. Tetrahedron Lett. 2007, 48, 6384. (e) Fan, R.;
Pu, D.; Wen, F.; Wu, J. J. Org. Chem. 2007, 72, 8994. (f) Chen, K.;
Richter, J. M.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 7247.
(7) (a) Marinescu, L. G.; Pedersen, C. M.; Bols, M. Tetrahedron 2005, 61,
123. (b) Pedersen, C. M.; Marinescu, L. G.; Bols, M. Org. Biomol.Chem.
2005, 3, 816. (c) Chouthaiwale, P. V.; Suryavanshi, G.; Sudalai, A.
Tetrahedron Lett. 2008, 49, 6401.
(8) Selected examples of iodolactamization and related transformations: (a)
Knapp, S.; Levorse, A.T. J. Org. Chem. 1988, 53, 4006. (b) Curran, D.P.;
Tang, C.-T. J. Org. Chem. 1989, 54, 3140. (c) Zhou, L.; Tan, C. K.; Jiang,
X.; Chen, F.; Yeung, Y.-Y. J. Am. Chem. Soc. 2010, 132, 15474. (d)_Li,
Z.; Song, L.; Li, C. J. Am. Chem. Soc. 2013, 135, 4640. (e) Liu, G.-Q.; Li,
Y.-M. J. Org. Chem. 2014, 79, 10094.
o
aConditions: 6 (0.1 mmol), NIS (4 equiv.), TMSN3 (4 equiv.), DCE (1 mL), 100 C,
b
c
air, 14 h.
Isolated yields.
The structure of 7a is confirmed by X-ray
d
e
crystallographic analysis. Obtained as a mixture of isomers (5:1). Obtained as a
mixture of isomers (3:1).
Scheme 4. Proposed Mechanism for the Formation of δ, ε
Vinyl Lactams
ACS Paragon Plus Environment