M. V. Farnworth et al. / Tetrahedron Letters 45 (2004) 7441–7443
7443
depressed yields of 7 (29% vs 69%), which is believed to
be due to chelation effects.
Acknowledgements
We thank the University of Utah for support of this
research. M.V.F. gratefully acknowledges the University
of Utah for an Undergraduate Research Opportunity
Fellowship (UROP).
The reversibility of the reaction was also explored. 4-
Methyl benzyl alcohol (6) readily underwent exchange
with 3 in the presence of Rh to afford a 1:1 mixture of
3 and 7, suggesting that the reaction is reversible
(Scheme 2). No exchange was observed in the absence
of catalyst.
References and notes
1. (a) Misra, M.; Luthra, R.; Singh, K. L.; Sushil, K. In
Comprehensive Natural Products Chemistry; Barton, D. H.
R., Nakanishi, K., Meth-Cohn, O., Eds.; Pergamon:
Oxford, UK, 1999; Vol. 4, p 25; (b) Staunton, J.; Wilkin-
son, B. Top. Curr. Chem. 1998, 195, 49; Goering, B. K.
Ph.D. Dissertation, Cornell University, 1995.
2. (a) Jensen, J. L.; Hashtroudi, H. J. Org. Chem. 1976, 41,
3299; (b) Duffy, J. L.; Kurth, J. A.; Kurth, M. J.
Tetrahedron Lett. 1993, 34, 1259; (c) Dumez, E.; Rodriguez,
O
O
no catalyst
no exchange
3
+
OH
O
O
0.5 mol%
[Rh(COD)(OMe)]2
6
7
`
J.; Dulcere, J.-P. J. Chem. Soc., Chem. Commun. 1997,
1831.
Scheme 2. Reversibility of the Rh-catalyzed oxa Michael reaction.
3. (a) Stewart, I. C.; Bergman, R. G.; Toste, F. D. J. Am.
Chem. Soc. 2004, 125, 8696; (b) Kisanga, P. B.; Ilankuma-
ran, P.; Fetterly, B. M.; Verkade, J. G. J. Org. Chem. 2002,
67, 3555.
4. (a) Noyce, D. S.; DeBruin, K. E. J. Am. Chem. Soc. 1968,
90, 372; (b) Fedor, L. R.; De, N. C.; Gurware, S. K. J. Am.
Chem. Soc. 1973, 95, 2905; (c) Jensen, J. L.; Carre, D. J. J.
Org. Chem. 1974, 39, 2103; (d) Wabnitz, T. C.; Spencer, J.
B. Org. Lett. 2003, 5, 2141.
5. (a) Nikitin, A. V.; Kholuiskaya, S. N.; Rubailo, V. L. J.
Chem. Biochem. Kinet. 1997, 3, 37; (b) Miller, K. J.;
Kitagawa, T. T.; Abu-Omar, M. M. Organometallics 2001,
20, 4403; (c) Ganguly, S.; Roundhill, D. M. Organometal-
lics 1993, 12, 4825; (d) van Lingen, H. L.; Zhuang, W.;
Hansen, T.; Rutjes, F. P. J. T.; Jørgensen, K. A. Org.
Biomol. Chem. 2003, 1, 1953.
Labelling experiments were also performed to provide
insight into the mechanism of the reaction. Deuterated
benzhydrol (8), prepared from NaBD4 reduction of benzo-
phenone, was added to MVK under our optimized reac-
tion conditions (Eq. 2). Deuterium scrambling was not
observed in the b-alkoxyketone product (9), which indi-
cated that b-hydride elimination does not lie on the cat-
alytic pathway.
O
Ph Ph
2
0.5 mol% 5
+
D
O
O
ð2Þ
OH
D
6. For aza-Michael addition catalysts, see: (a) Srivastava, N.;
Banik, B. K. J. Org. Chem. 2003, 68, 2109; (b) Zhuang, W.;
Hazell, R. G.; Jørgensen, K. A. Chem. Commun. 2001,
1240; (c) Kobayashi, S.; Kakumoto, K.; Sugiura, M. Org.
Lett. 2002, 4, 1319; (d) Sibi, M. P.; Gorikunti, U.; Liu, M.
Tetrahedron 2002, 58, 8357.
Ph
Ph
8
9
In summary, [Rh(COD)(OMe)]2 serves as a catalyst for
the addition of alcohols to terminal enones under mild
conditions. The catalyst may be generated in situ
through the addition of Na2CO3 to an alcoholic solution
of [Rh(COD)Cl]2.
7. Uson, R.; Oro, L. A.; Cabeza, J. A. Inorg. Synth. 1985, 23,
126.