Communication
ChemComm
2 (a) D. J. Sam and H. E. Simmons, J. Am. Chem. Soc., 1972, 94,
4024–4025; (b) K. Sato, M. Aoki and R. Noyori, Science, 1998, 281,
1646–1647; (c) R. Noyori, M. Aoki and K. Sato, Chem. Commun., 2003,
1977–1986; (d) S. Bailey, Chem. Rev., 1958, 58, 925–1010; (e) G. Olivo,
absence of a thiyl radical. These results suggest that the thiyl
radical plays a vital role in the highly selective oxygenation process
of benzylic ether sp3 C–H bonds, which has the potential for site-
selective functionalization of complex biomolecules.
´
O. Cusso and M. Costas, Chem. – Asian J., 2016, 11, 3148–3158;
( f ) R. Lin, F. Chen and N. Jiao, Org. Lett., 2012, 14, 4158–4161;
(g) T. Wang and N. Jiao, J. Am. Chem. Soc., 2013, 135, 11692–11695;
(h) J. A. Marko, A. Durgham, S. L. Bretz and W. Liu, Chem. Commun.,
2019, 55, 937–940.
3 (a) B. Mu¨hldorf and R. Wolf, Angew. Chem., Int. Ed., 2016, 55,
427–430; (b) M. Nakanishi and C. Bolm, Adv. Synth. Catal., 2007,
349, 861–864; (c) C. Hong, J. Ma, M. Li, L. Jin, X. Hu, W. Mo, B. Hu,
N. Sun and Z. Shen, Tetrahedron, 2017, 73, 3002–3009; (d) H. Yi,
C. Bian, X. Hu, L. Niu and A. Lei, Chem. Commun., 2015, 51,
14046–14049; (e) Z. Zhang, Y. Gao, Y. Liu, J. Li, H. Xie, H. Li and
W. Wang, Org. Lett., 2015, 17, 5492–5495; ( f ) S. Li, B. Zhu, R. Lee,
B. Qiao and Z. Jiang, Org. Chem. Front., 2018, 5, 380–385.
4 (a) Y.-F. Liang and N. Jiao, Acc. Chem. Res., 2017, 50, 1640–1653;
(b) F. Chen, T. Wang and N. Jiao, Chem. Rev., 2014, 114, 8613–8661;
(c) M. Lee and M. S. Sanford, J. Am. Chem. Soc., 2015, 137,
12796–12799; (d) L. Ren, M.-M. Yang, C.-H. Tung, L.-Z. Wu and
H. Cong, ACS Catal., 2017, 7, 8134–8138; (e) G. Urgoitia,
To gain insight into the mechanism of this oxygenation
reaction, radical inhibition experiments were conducted. Drastically
decreased yields of 11a and trace yield of 1b were observed when a
radical scavenger TEMPO (100 mol%) or a radical inhibitor
butylated hydroxytoluene BHT (100 mol%) was added under the
standard reaction conditions (see the ESI†). These results suggest
that a radical process might be involved in these transformations.
The desired amides and esters could possibly be generated
through the nucleophilic addition of water to a benzylic cation
intermediate.12 Thus, equivalents of H2O18 were added under the
standard conditions, and 43% and 46% yields of 11aa and 1bb
were afforded. Importantly, no 18O-labeled 11aa and only a small
amount of 18O-labeled 1bb (6.6%) were observed (see the ESI†).13
Moreover, when this reaction was conducted under an argon
atmosphere, this transformation was completely suppressed even
in the presence of water, and no corresponding carbonyl com-
pounds were observed. These results reveal that the benzylic
cation intermediate could be ruled out, and the oxygen atom is
most likely derived from molecular oxygen.
´
R. SanMartin, M. T. Herrero and E. Domınguez, ACS Catal., 2017,
7, 3050–3060; ( f ) W. Liu and J. T. Groves, Acc. Chem. Res., 2015, 48,
1727–1735; (g) M. Lesieur, C. Genicot and P. Pasau, Org. Lett., 2018,
20, 1987–1990; (h) X. Liu, L. Lin, X. Ye, C.-H. Tan and Z. Jiang, Asian
J. Org. Chem., 2017, 6, 422–425; (i) K.-J. Liu, S. Jiang, L.-H. Lu, L.-L.
Tang, S.-S. Tang, H.-S. Tang, Z. Tang, W.-M. He and X. Xu, Green
Chem., 2018, 20, 3038–3043; ( j) H. Wang, Z. Wang, H. Huang, J. Tan
and K. Xu, Org. Lett., 2016, 18, 5680–5683.
5 (a) C. Miao, H. Zhao, Q. Zhao, C. Xia and W. Sun, Catal. Sci. Technol.,
In conclusion, we have successfully developed a highly
efficient and mild method for the oxygenation of benzylic ether
C–H bonds via an iron/thiyl radical dual catalytic system. A
notable feature of this transformation is its high regioselectivity
for the last-stage functionalization of biomolecules, providing
good opportunities for applications in drug discovery and
development. Preliminary mechanistic studies suggest that a
radical process might be involved in this reaction, and both
iron and thiyl radical play important roles in the catalytic cycle.
The isotope labelling experiments demonstrated that the
oxygen introduced into the ester moiety most likely originated
from molecular oxygen. Further studies to expand this C–H
bond oxidation are ongoing in our lab and the results will be
reported in due course.
¨
2016, 6, 1378–1383; (b) K. Schroder, B. Join, A. J. Amali, K. Junge,
X. Ribas, M. Costas and M. Beller, Angew. Chem., Int. Ed., 2011, 50,
1425–1429; (c) Y.-D. Du, C.-W. Tse, Z.-J. Xu, Y. Liu and C.-M. Che,
Chem. Commun., 2014, 50, 12669–12672; (d) G.-Q. Chen, Z.-J. Xu,
C.-Y. Zhou and C.-M. Che, Chem. Commun., 2011, 47, 10963–10965;
(e) X. Guo, R. Yu, H. Li and Z. Li, J. Am. Chem. Soc., 2009, 131,
17387–17393; ( f ) W. Liu, Y. Li, K. Liu and Z. Li, J. Am. Chem. Soc.,
2011, 133, 10756–17059; (g) X. Huang and J. T. Groves, Chem. Rev.,
2018, 118, 2491–2553; (h) X. Jiang, J. Zhang and S. Ma, J. Am. Chem.
Soc., 2016, 138, 8344–8347; (i) Z. Feng, Q.-Q. Min and X. Zhang, Org.
Lett., 2016, 18, 44–47; ( j) L. An, Y. Xiao, S. Zhang and X. Zhang,
Angew. Chem., Int. Ed., 2018, 57, 6921–6925; (k) H. Yu, S. Ru, G. Dai,
Y. Zhai, H. Lin, S. Han and Y. Wei, Angew. Chem., Int. Ed., 2017, 56,
3867–3871; (l) B. Liu, F. Jin, T. Wang, X. Yuan and W. Han, Angew.
Chem., Int. Ed., 2017, 56, 12712–12717; (m) P. Hu, M. Tan, L. Cheng,
H. Zhao, R. Feng and W. Han, Nat. Commun., 2019, 10, 2425–2433;
(n) A. Gonzalez-de-Castro, C. M. Robertson and J. Xiao, J. Am. Chem.
Soc., 2014, 136, 8350–8360.
We are grateful for the financial support from the National
Natural Science Foundation of China (No. 21572027 and No.
21801029), the 100 Talent Plan from Chongqing University
(No. 0247001104405) and the Natural Science Foundation of
Chongqing (No. cstc2019jcyj-msxmX0048).
6 (a) C. J. Legacy, A. Wang, B. J. O’Day and M. H. Emmert, Angew.
Chem., Int. Ed., 2015, 54, 14907–14910; (b) Y. Liu, C. Wang, D. Xue,
M. Xiao, J. Liu, C. Li and J. Xiao, Chem. – Eur. J., 2017, 23, 3062–3066;
(c) Y. Zhang, D. Riemer, W. Schilling, J. Kollmann and S. Das, ACS
Catal., 2018, 8, 6659–6664.
8 (a) J. Jin and D. W. C. MacMillan, Nature, 2015, 525, 87–90; (b) Y. Y.
Loh, K. Nagao, A. J. Hoover, D. Hesk, N. R. Rivera, S. L. Colletti,
I. W. Davies and D. W. C. MacMillan, Science, 2017, 358, 1182–1187.
9 (a) H. Wang, Q. Lu, C. Qian, C. Liu, W. Liu, K. Chen and A. Lei,
Angew. Chem., Int. Ed., 2016, 55, 1094–1097; (b) Y. Deng, X.-J. Wei,
Conflicts of interest
There are no conflicts to declare.
¨
H. Wang, Y. Sun, T. Noel and X. Wang, Angew. Chem., Int. Ed., 2017,
56, 832–836.
10 B. Xiong, X. Zeng, S. Geng, S. Chen, Y. He and Z. Feng, Green Chem.,
2018, 20, 4521–4527.
11 P. Xiong, H.-H. Xu, J. Song and H.-C. Xu, J. Am. Chem. Soc., 2018,
140, 2460–2464.
12 (a) Q. Xia, Q. Wang, C. Yan, J. Dong, H. Song, L. Li, Y. Liu, Q. Wang,
X. Liu and H. Song, Chem. – Eur. J., 2017, 23, 10871–10877; (b) S. Iwata,
T. Hata and H. Urabe, Adv. Synth. Catal., 2012, 354, 3480–3484.
Notes and references
¨
1 (a) J. Piera and J.-E. Backvall, Angew. Chem., Int. Ed., 2008, 47,
3506–3523; (b) Z. Shi, C. Zhang, C. Tang and N. Jiao, Chem. Soc. Rev.,
2012, 41, 3381–3430; (c) S. S. Stahl, Science, 2005, 309, 1824–1826;
(d) L. Que and W. B. Tolman, Nature, 2008, 455, 333–340; (e) E. J. Horn,
B. R. Rosen, Y. Chen, J. Tang, K. Chen, M. D. Eastgate and P. S. Baran,
Nature, 2016, 533, 77–81; ( f ) S. D. McCann and S. S. Stahl, Acc. Chem. 13 D. Zheng, X. Zhou, B. Cui, W. Han, N. Wan and Y. Chen, Chem-
Res., 2015, 48, 1756–1766.
CatChem, 2017, 9, 937–940.
12702 | Chem. Commun., 2019, 55, 12699--12702
This journal is ©The Royal Society of Chemistry 2019