A. Cordero-Vargas et al. / Tetrahedron Letters 45 (2004) 7335–7338
7337
9. Synthesis of ( )-S-[4-(4-chlorophenyl)-1-(1,2-O-isopropyl-
idene-3-O-methyl-a-D-glucofuranosyl)-4-oxobutyl] O-ethyl-
dithiocarbonate 4a. A solution of 2a (0.5g, 1.81mmol)
and 3 (0.73g, 3.63mmol) in 1,2-dichloroethane (1.8mL)
was refluxed for 15min under argon. Lauroyl peroxide
(DLP) was then added (5mol%) to the refluxing solution,
followed by additional portions (2mol% every 90min).
When starting material was completely consumed (after
addition of 17mol% of DLP), the crude mixture was
cooled to room temperature, concentrated under reduced
pressure, and the residue was purified by flash column
chromatography (silica gel, petroleum ether–ethyl acetate,
9:1) to give adduct 4a (0.801g, 93%) as a separable mixture
of diastereoisomers (ratio 2:1). Diastereoisomer I (white
crystals, recrystallized from petroleum ether, mp = 95–
96°C): 1H NMR (CDCl3, 400MHz) d 7.88 (d, 2H, CH
arom, J = 8.0Hz), 7.42 (d, 2H, CH arom, J = 8.8Hz), 5.92
(d, 1H, O–CH–O, J = 4.0Hz), 4.6 (q, 2H, OCH2,
J = 7.1Hz), 4.55 (d, 1H, O2CH–CH, J = 4.4Hz), 4.34
(dd, 1H, S–CH–CH, J = 9.4, 3Hz), 4.18 (dt, 1H, CH–S,
J = 9.4, 4.3Hz), 3.79 (d, 1H, CH–OMe, J = 2.8Hz), 3.36
(s, 3H, OCH3), 3.10–3.24 (m, 2H, CO–CH2), 2.46–2.53 (m,
1H, CO–CH2–CH2), 2.05–2.14 (m, 1H, CO–CH2–CH2),
1.50 (s, 3H, C–CH3), 1.39 (t, 3H, CH2–CH3, J = 7.0Hz),
1.32 (s, 3H, C–CH3); 13C NMR (CDCl3, 100MHz) d 213.1
(C@S), 198.1 (CO), 139.4 (C–CO), 135.2 (C–Cl), 129.5
(CH arom), 128.9 (CH arom), 111.8 (O–C–O), 105.3 (O–
CH–O), 84.1 (O2CH–CH), 81.2 (S–CH–CH), 81.1 (CH–
S), 70.3 (OCH2), 57.9 (OCH3), 48.4 (CH–OMe), 35.8
(CO–CH2), 27.0 (CO–CH2–CH2), 26.9 (C–CH3), 26.3 (C–
CH3), 13.8 (CH2–CH3); IR (CCl4) 1691 (C@O), 1217
These preliminary studies indicate that this approach
could indeed be used to construct the gilvocarcins (1a–
b). The conditions are mild and many substituents are
tolerated. The successful synthesis of differentially pro-
tected dihydroxy derivatives 21 and 22 is particularly
relevant in this context. Furthermore, because this
approach allows the use of a great variety of substituents
(including electron withdrawing groups) on the aromatic
ring and on the sugar moiety, it should be useful for the
expedient preparation of a broad variety of analogues of
the natural products.
Acknowledgements
We would like to thank CONACYT (Mexico) for gener-
ous financial support (A.C.V.).
Supplementary data
Supplementary material associated with this article can
2004.08.009. This contains detailed description of experi-
mental procedures and spectral information and analy-
ses for new compounds.
(C@S), 1052 (S–C) cmÀ1
;
MS (CI+NH3) m/z
References and notes
494 (MH++NH3), 492 (MH++NH3), 477 (MH+), 475
25
1. For reviews see: (a) Jaramillo, C.; Knapp, S. Synthesis
1994, 1; (b) Suzuki, K.; Matsumoto, T. In Preparative
Carbohydrate Chemistry; Hanessian, S., Ed.; Marcel-
Dekker: New York, 1997; pp 527–542; (c) Posteme, M.
H. D. Tetrahedron 1992, 48, 8545.
2. (a) Matsumoto, T.; Hosya, T.; Suzuki, K. J. Am. Chem.
Soc. 1992, 114, 3568; (b) Hosoya, T.; Takashiro, E.;
Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 1994, 116,
1004.
(MH+); ½aꢀD +15.4 (c 1, CHCl3). Diastereoisomer II
(colorless oil): 1H NMR (CDCl3, 400MHz) d 7.88 (d,
2H, CH arom, J = 8.8Hz), 7.47 (d, 2H, CH arom,
J = 8.8Hz), 5.91 (d, 1H, O–CH–O, J = 3.6Hz), 4.58–4.65
(m, 3H, OCH2 and O2CH–CH),4.34 (dd, 1H, S–CH–CH,
J = 8.8, 2.8Hz), 4.24 (dt, 1H, CH–S, J = 9.4, 3.4Hz), 3.78
(d, 1H, CH–OMe, J = 3.6Hz), 3.42 (s, 3H, OCH3), 3.16 (t,
2H, CO–CH2, J = 7.6Hz), 2.33 (dddd, 1H, CO–CH2–
CH2, J = 15.0, 7.6, 7.4, 3.5Hz), 1.98–2.07 (m, 1H, CO–
CH2–CH2), 1.48 (s, 3H, C–CH3), 1.39 (t, 3H, CH2–CH3,
J = 7.4Hz), 1.32 (s, 3H, C–CH3); 13C NMR (CDCl3,
100MHz) d 213.8 (C@S), 198.2 (CO), 139.5 (C–CO), 135.1
(C–Cl), 129.6 (CH arom), 128.9 (CH arom), 111.7 (O–C–
O), 104.9 (O–CH–O), 84.5 (O2CH–CH), 81.3 (S–CH–
CH), 80.6 (CH–S), 70.3 (OCH2), 57.7 (OCH3), 49.8 (CH–
OMe), 36.0 (CO–CH2), 26.9 (C–CH3), 26.3 (C–CH3), 25.1
(CO–CH2–CH2), 13.8 (CH2–CH3); IR (CCl4) 1690
(C@O), 1217 (C@S), 1052 (S–C) cmÀ1; MS (CI+NH3)
m/z 494 (MH++NH3), 492 (MH++NH3), 477 (MH+), 475
3. Matsumoto, T.; Hosoya, T.; Suzuki, K. Tetrahedron Lett.
1990, 31, 4629.
4. (a) Manitto, P.; Speranza, G.; Monti, D.; Fontana, G.;
Panosetti, E. Tetrahedron 1995, 51, 11531; (b) Hulme, A.
N.; Henry, S. S.; Meyers, A. I. J. Org. Chem. 1995, 60,
1265; (c) Schoepfer, J.; Gay, B.; End, N.; Muller, E.;
Scheffel, G.; Cravatti, G.; Furet, P. Bioorg. Med. Chem.
Lett. 2001, 11, 1201.
5. (a) Liard, A.; Quiclet-Sire, B.; Saicic, R. N.; Zard, S. Z.
Tetrahedron Lett. 1997, 38, 1759; (b) Cordero-Vargas, A.;
Quiclet-Sire, B.; Zard, S. Z. Org. Lett. 2003, 5, 3717.
6. For some recent publications involving cyclization of
carbon-centered radicals to aromatic ring systems, see: (a)
Kaoudi, T.; Quiclet-Sire, B.; Zard, S. Z. Angew. Chem.,
Int. Ed. 2000, 39, 731; (b) Ohno, H.; Wakayama, R.;
Maeda, S.; Iwasaki, H.; Okumura, M.; Iwata, C.; Mika-
miyama, H.; Tanaka, T. J. Org. Chem. 2003, 68, 5909; (c)
Clive, D. L.; Fletcher, S. P.; Liu, D. J. Org. Chem. 2004,
69, 3282; (d) Menes-Arzate, M.; Martinez, R.; Cruz-
Almanza, R.; Muchowski, J. M.; Osornio, Y. M.;
Miranda, L. D. J. Org. Chem. 2004, 69, 4001.
7. (a) Zard, S. Z. Angew. Chem., Int. Ed. Engl. 1997, 36, 672;
(b) Zard, S. Z. In Radicals in Organic Synthesis;
Renaud, P., Sibi, M., Eds.; Wiley VCH: Weinheim,
2001; p 90.
25
(MH+); ½aꢀD À35.1 (c 1, CHCl3).
10. Synthesis of ( )-6-chloro-4-(1,2-O-isopropylidene-3-O-
methyl-a-D-glucofuranosyl)-3,4-dihydro-2H-naphthalen-
1-one 5a. A solution of 4a (0.67g, 1.43mmol) in 1,2-
dichloroethane (14mL) was refluxed for 15min under
argon. Lauroyl peroxide (DLP) was then added portion-
wise (20mol% per hour) to the refluxing solution. When
starting material was completely consumed (after addition
of 1.4equiv of DLP), the crude mixture was cooled to
room temperature, concentrated under reduced pressure,
and purified by flash column chromatography (silica gel,
petroleum ether–ethyl acetate, 9:1 to 2:1) to give tetralone
5a (0.283g in 57%) as a separable mixture of diastereo-
isomers. Diastereoisomer I (white needles, recrystallized
from petroleum ether, mp = 129–132°C): 1H NM
(CDCl3, 400MHz) d 8.0 (d, 1H, CH arom, J = 8.8Hz),
7.35 (d, 1H, CH arom, J = 8.8Hz), 7.35 (s, 1H, CH arom),
R
8. Josan, J. S.; Eastwood, F. W. Carbohydr. Res. 1968, 7,
161.