Luminescent Liquid Crystalline Zinc Complexes
A R T I C L E S
Au,37,38 Cu,39 Ag,40,41 and a few examples have concerned their
properties in the mesophase. An important example of the
interplay between self-organization and luminescence is the
recent report of a copper metallomesogen for security ink
applications.39
Scheme 1
Zinc complexes with nitrogen ligands display interesting
optical properties for LED devices and sensors,42-47 but the
tetrahedral geometry that the metal center usually tends to adopt
has proven to be detrimental for mesomorphism. For example,
in the extensively studied compounds with salicylaldiminate48
or diketonate ligands,16 complexes derived from Pd, Cu, VO,
Ni, Fe, or Mn are LCs but the zinc analogs are not,16,49 probably
due to the unfavorable geometry and the lack of additional inter-
actions between the metal centers.49 Indeed, all previous litera-
ture reports on zinc metallomesogens describe the zinc atom in
a different coordination geometry, for example, in a planar
coordination with porphyrin ligands50 and extended analogs, or
pentacoordinated with a trigonal-bipyramidal geometry with tris-
(2-aminoethyl)amine,51 dithiobenzoates,52 or tridentate pyri-
dines.53,54 Therefore, obtaining LC tetrahedral zinc complexes
has remained an elusive objective for long time.
and mononuclear complexes with Au,55,56 B,57,58 and Rh,59
respectively.
As a result of the versatility of the pyrazole ring, we recently
reported that tetrahedral zinc complexes exhibit LC behavior
with a flexible ligand design, and we prepared the first liquid
crystalline tetrahedral zinc complex by using a nonrigid ligand
derived from bis(pyrazolyl)ethane.60 Afterward, another report
on a tetrahedral zinc complex with columnar mesomorphism
appeared, and this example contained a nondiscoid dipyridyl
ligand.61
We have been investigating pyrazole-based metallomesogens
and found that 3,5-diarylpyrazoles are excellent building-blocks
for the induction of liquid crystalline behavior at room tem-
perature, as demonstrated by a variety of trinuclear, dinuclear,
(28) Suarez, S.; Imbert, D.; Gumy, F.; Piguet, C.; Bunzli, J. C. G. Chem. Mater.
2004, 16, 3257-3266.
Encouraged by our previous results, we explored new Zn
complexes with the aim of obtaining LCs at room temperature
and luminescence properties both in solution and in the liquid
crystalline state. This objective has been achieved through the
preparation of several pyrazoles, Hpz 1-6, which have different
numbers (ranging from 2 to 6) and positions of side chains
(Scheme 1 and Chart 1), their bis(pyrazolyl)methane derivatives
Bpzm 7-12 and their respective Zn complexes of formulas
[ZnCl2(Hpz)2] 13-18 and [ZnCl2(Bpzm)] 19-24. All of the
compounds possess a nonplanar core due to the presence of
the methylene spacer and/or coordination to the tetrahedral
center. As a result, the molecules do not have a conventional
shape in that they are far from the typical rodlike and flat
disclike geometries of common LCs. This particular design may
have important implications in the optical properties. The
synthesis and characterization of the new ligands and complexes,
the crystalline structures of complexes 18 and 24, their supra-
molecular structures in the mesophase, and the optical prop-
erties are all discussed. The different numbers and positions of
side chains in the pyrazole ligand enabled us to access a variety
of mesophases and, in particular, to obtain columnar arrange-
ments with luminescent properties at room temperature. An
interplay between nonconventional molecular shapes (due to
the tetrahedral core) and the supramolecular mesomorphic order
(due to the ligand design) led to materials that combine a
(29) Yang, Y. T.; Driesen, K.; Nockemann, P.; Van Hecke, K.; Van Meervelt,
L.; Binnemans, K. Chem. Mater. 2006, 18, 3698-3704.
(30) Neve, F.; Ghedini, M.; Crispini, A. Chem. Commun. 1996, 2463-2464.
(31) Wen, C.-R.; Wang, Y.-J.; Wang, H.-C.; Sheu, H.-S.; Lee, G.-H.; Lai, C.
K. Chem. Mater. 2005, 17, 1646-1654.
(32) Ghedini, M.; Pucci, D.; Crispini, A.; Aiello, I.; Barigelletti, F.; Gessi, A.;
Francescangeli, O. Appl. Organomet. Chem. 1999, 13, 565-581.
(33) Pucci, D.; Barberio, G.; Crispini, A.; Francescangeli, O.; Ghedini, M.; La
Deda, M. Eur. J. Inorg. Chem. 2003, 3649-3661.
(34) Damm, C.; Israel, G.; Hegmann, T.; Tschierske, C. J. Mater. Chem. 2006,
16, 1808-1816.
(35) Camerel, F.; Ziessel, R.; Donnio, B.; Bourgogne, C.; Guillon, D.; Schmutz,
M.; Iacovita, C.; Bucher, J.-P. Angew. Chem., Int. Ed. 2007, 46, 2659-
2662.
(36) Qi, M.-H.; Liu, G.-F. J. Mater. Chem. 2003, 13, 2479-2484.
(37) Bayo´n, R.; Coco, S.; Espinet, P. Chem.-Eur. J. 2005, 11, 1079-1085.
(38) Kishimura, A.; Yamashita, T.; Aida, T. J. Am. Chem. Soc. 2005, 127, 179-
183.
(39) Kishimura, A.; Yamashita, T.; Yamaguchi, K.; Aida, T. Nat. Mater. 2005,
4, 546-549.
(40) Pucci, D.; Barberio, G.; Bellusci, A.; Crispini, A.; La Deda, M.; Ghedini,
M.; Szerb, E. D. Eur. J. Inorg. Chem. 2005, 2457-2463.
(41) Pucci, D.; Barberio, G.; Bellusci, A.; Crispini, A.; Donnio, B.; Giorgini,
L.; Ghedini, M.; La Deda, M.; Szerb, E. D. Chem.-Eur. J. 2006, 12, 6738-
6747.
(42) Kimura, E.; Koike, T. Chem. Soc. ReV. 1998, 27, 179-184.
(43) Tanaka, H.; Tokito, S.; Taga, Y.; Okada, A. J. Mater. Chem. 1998, 8, 1999-
2003.
(44) Jiang, P.; Guo, Z. Coor. Chem. ReV. 2004, 248, 205-229.
(45) Miozzo, L.; Papagni, A.; Casalbore-Miceli, G.; Del Buttero, P.; Girotti,
C.; Moret, M.; Trabattoni, S. Chem. Mater. 2004, 16, 5124-5132.
(46) Zucchero, A. J.; Wilson, J. N.; Bunz, U. H. F. J. Am. Chem. Soc. 2006,
128, 11872-11881.
(47) Nolan, E. M.; Ryu, J. W.; Jaworski, J.; Feazell, R. P.; Sheng, M.; Lippard,
S. J. J. Am. Chem. Soc. 2006, 128, 15517-15528.
(48) Hoshino, N. Coord. Chem. ReV. 1998, 174, 77-108.
(49) Pegenau, A.; Hegmann, T.; Tschierske, C.; Diele, S. Chem.-Eur. J. 1999,
5, 1643-1660.
(50) Gregg, B. A.; Fox, M. A.; Bard, A. J. Chem. Commun. 1987, 1134-
1135.
(55) Barbera´, J.; Elduque, A.; Gime´nez, R.; Oro, L. A.; Serrano, J. L. Angew.
Chem., Int. Ed. 1996, 35, 2832-2835.
(56) Barbera´, J.; Elduque, A.; Gime´nez, R.; Lahoz, F. J.; Lo´pez, J. A.; Oro, L.
A.; Serrano, J. L. Inorg. Chem. 1998, 37, 2960-2967.
(51) Stebani, U.; Lattermann, G.; Wittenbger, M.; Wendorff, J. H. Angew. Chem.,
Int. Ed. 1996, 35, 1859.
(52) Adams, H.; Albeniz, A. C.; Bailey, N. A.; Bruce, D. W.; Cherodian, A.
S.; Dhillon, R.; Dunmur, D. A.; Espinet, P.; Feijoo, J. L.; Lalinde, E.;
Maitlis, P. M.; Richardson, R. M.; Ungar, G. J. Mater. Chem. 1991, 1,
843-855.
(57) Barbera´, J.; Gime´nez, R.; Serrano, J. L. AdV. Mater. 1994, 6, 470-472.
(58) Barbera´, J.; Gime´nez, R.; Serrano, J. L. Chem. Mater. 2000, 12, 481-489.
(59) Gime´nez, R.; Elduque, A.; Lo´pez, J. A.; Barbera´, J.; Cavero, E.; Lantero,
I.; Oro, L. A.; Serrano, J. L. Inorg. Chem. 2006, 45, 10363-10370.
(60) Gime´nez, R.; Manrique, A. B.; Uriel, S.; Barbera´, J.; Serrano, J. L. Chem.
Commun. 2004, 2064-2065.
(53) Terazzi, E.; Benech, J.-M.; Rivera, J.-P.; Bernardinelli, G.; Donnio, B.;
Guillon, D.; Piguet, C. Dalton Trans. 2001, 769-772.
(54) Morale, F.; Date, R. W.; Guillon, D.; Bruce, D. W.; Finn, R. L.; Wilson,
C.; Blake, A. J.; Schro¨der, M.; Donnio, B. Chem.-Eur. J. 2003, 9, 2484-
2501.
(61) Barberio, G.; Bellusci, A.; Crispini, A.; Ghedini, M.; Golemme, A.; Prus,
P.; Pucci, D. Eur. J. Inorg. Chem. 2005, 181-188.
9
J. AM. CHEM. SOC. VOL. 129, NO. 37, 2007 11609