ORGANIC
LETTERS
2003
Vol. 5, No. 12
2169-2171
Microwave-Assisted Synthesis of Diaryl
Ethers without Catalyst
Feng Li, Quanrui Wang,* Zongbiao Ding, and Fenggang Tao
Department of Chemistry, Fudan UniVersity, 200433 Shanghai, P. R. China
Received April 15, 2003
ABSTRACT
Diaryl ethers have been prepared by direct coupling of phenols including those that bear a strong electron-attracting substituent to electron-
deficient aryl halides through SNAr-based addition reactions with assistance of microwave irradiation in high to excellent yields within 5−10
min. No catalysts were required under our conditions.
Diaryl ether motifs are known to be a presence in a variety
of natural products and biologically interesting compounds1
and consequently provide a strong incentive for synthesis.
Central to this would be the assembly of the ether linkage.
Over the past years, tremendous effort has been devoted to
supplanting the classical Ullmann reaction2 and many valu-
able new methodologies for diaryl ether formation have been
developed.3,4 An important alternative to the Ullmann method
is the nucleophilic SNAr reaction of activated aryl halides,
preferentially in a 1,2- and/or 1,4-substitution pattern, with
phenols under basic conditions.5,6 The other variant, which
is more prevalent, features direct coupling of phenols with
aryl halides under catalytic effects of Cu(I) or Pd(I) species.
Although these advances have largely augmented the syn-
thetic scope, there are still some limitations. For example,
phenols can smoothly be converted to diaryl ethers only if
no strong electron-withdrawing group is present or if
exceedingly strenuous conditions (considerably prolonged
reaction time, elevated reaction temperature) are employed,
thus limiting the substrates employed and substituents in the
products.
Microwave heating has been widely recognized as an
efficient synthetic tool and its benefits have been well-
documented.7,8 Loupy has described a solvent free/microwave
method for the synthesis of aromatic ethers by the SNAr
reaction of 4-nitro-substituted halogenobenzenes or 2-ha-
lonaphthylenes, but only phenol was employed.8a Similar
results have been achieved by Bogdal, who prepared a range
of aromatic ethers by reaction of phenols with primary alkyl
halides under microwave heating, however, in the presence
of TBAB.8b Also Fan has employed the same strategy for
the reaction of 1-chloro-4-nitrobenzene and phenolates,
affording 4-nitrodiphenyl ethers.8c In this Letter, we wish to
(1) (a) Nicolaou, K. C.; Christopher, N. C. B. J. Am. Chem. Soc. 2002,
124, 10451. (b) Evans, D. A.; Dismore, C. J.; Watson, P. S.; Wood, M. R.;
Richardson, T. I.; Trotter, B. W.; Katz, J. L. Angew. Chem., Int. Ed. Engl.
1998, 37, 2704. (c) Nicolauo, K. C.; Takayanagi, M.; Jain, N. F.; Natarajan,
S.; Koumbis, A. E.; Bandi, T.; Ramanjulu, J. M. Angew. Chem., Int. Ed.
Engl. 1998, 37, 2717. (d) Boger, D. L.; Miyazaki, O. L.; Beresis, R. T.;
Castle, S. L.; Wu, J. H.; Jin, Q. J. Am. Chem. Soc. 1998, 120, 8920.
(2) (a) Moroz, A. A.; Shvartsberg, M. S. Russ. Chem. ReV. 1974, 43,
679. (b) Ullmann, F. Chem. Ber. 1904, 37, 853
(3) For a recent review, see: Sawyer, J. S. Tetrahedron 2000, 56, 5045.
(4) (a) Elizabeth, B.; Zhiguo, J. S.; David, T.; Peter, G. D. Org. Lett.
2002, 4, 1623. (b) Simon, J.; Salzbrunn, S.; Surya Prakash, G. K.; Petasis,
N. A.; Olah, G. A. J. Org. Chem. 2001, 66, 633. (c) Gujadhur, R. K.; Bates,
C. G.; Venkataraman, D. Org. Lett. 2001, 3, 4315. (d) Roberto, O.; Raul,
S.; Esther, D. Tetrahedron Lett. 2000, 41, 4357. (e) Shon, R. P.; Subhabrata,
S.; Andrei, V.; Erika, S. Org. Lett. 1999, 1, 1721. (f) Alexey, V. K.; Justin,
F. B.; Peter, R.; Victor, S. J. Org. Chem. 1999, 64, 2986. (g) Attila, A.;
David, W. O.; Ayumu, K.; John, P. W.; Joseph, P. S.; Stephen, L. B. J.
Am. Chem. Soc. 1999, 121, 4369. (h) Grace, M.; Christopher, I.; Arnold,
L. R.; John, F. H. J. Am. Chem. Soc. 1999, 121, 3224. (i) Theil, F. Angew.
Chem., Int. Ed. 1999, 38, 2345.
(7) (a) Perreux, L.; Loupy, A. Tetrahedron 2001, 57, 9199. (b) Lidstrom,
P.; Tierney, J.; Wathey, J. Tetrahedron 2001, 57, 9225. (c) Kaiser, N. F.
K.; Bremberg, U.; Larhed, M.; Moberg, C.; Hallberg, A. Angew. Chem.,
Int. Ed. 2000, 39, 3596. (d) Westman, J. Org. Lett. 2001, 3, 3745. (e) Brain,
C. T.; Brunton, S. A. Synlett. 2001, 382.
(8) For reports on the use of microwave irradiation in the synthesis of
aromatic ethers, see: (a) Chaouchi, M.; Loupy, A.; Marque, S.; Petit, A.
Eur. J. Org. Chem. 2002, 1278. (b) Bogdal, D.; Pielichowski, J.; Boron, A.
Synth. Commun. 1998, 28, 3029. (c) Fan, L.; Zhang, Y.; Wang, Y.; Liu, J.;
Ma, M.; Chen, S. Huaxue Yanjiu Yu Yingyong 2001, 13, 336.
(5) Sawyer, J. S.; Schmittling, E. A.; Palkowitz, J. A.; Smith, W. J., III
J. Org. Chem. 1998, 63, 6338.
(6) For a recent report on the synthesis of dinaphthyl ethers, see: Wipf,
P.; Lynch, S. M. Org. Lett. 2003, 5, 1155.
10.1021/ol0346436 CCC: $25.00 © 2003 American Chemical Society
Published on Web 05/14/2003