2130
J. G. Solsona et al.
LETTER
(2) Paterson nicely established the synthetic utility of lactate-
derived ketones in stereoselective syn and anti boron-
mediated aldol reactions. See (a) Paterson, I.; Wallace, D.
J.; Velázquez, S. M. Tetrahedron Lett. 1994, 35, 9083.
(b) Paterson, I.; Wallace, D. J. Tetrahedron Lett. 1994, 35,
9087. (c) Paterson, I.; Wallace, D. J.; Cowden, C. J.
Synthesis 1998, 639.
(3) (a) Figueras, S.; Martín, R.; Romea, P.; Urpí, F.; Vilarrasa,
J. Tetrahedron Lett. 1997, 38, 1637. (b) Solsona, J. G.;
Romea, P.; Urpí, F.; Vilarrasa, J. Org. Lett. 2003, 5, 519.
(c) Solsona, J. G.; Romea, P.; Urpí, F. Tetrahedron Lett.
2004, 45, 5379.
(16) (a) Stork, G.; Paterson, I.; Lee, F. K. C. J. Am. Chem. Soc.
1982, 104, 4686. (b) Burke, S. D.; Schoenen, F. J.;
Murtiashaw, C. W. Tetrahedron Lett. 1986, 27, 449.
(c) Stork, G.; Rychnovsky, S. D. J. Am. Chem. Soc. 1987,
109, 1565. (d) Nakata, M.; Arai, M.; Tomooka, K.; Ohsawa,
N.; Kinoshita, M. Bull. Chem. Soc. Jpn. 1989, 62, 2618.
(e) Kochetkov, N. K.; Sviridov, A. F.; Ermolenko, M. S.;
Yashunsky, D. V.; Borodkin, V. S. Tetrahedron 1989, 45,
5109. (f) Tone, H.; Nishi, T.; Oikawa, Y.; Hikota, M.;
Yonemitsu, O. Chem. Pharm. Bull. 1989, 37, 1167.
(g) Mulzer, J.; Kirstein, H. M.; Buschmann, J.; Lehmann, C.;
Luger, P. J. Am. Chem. Soc. 1991, 113, 910. (h) Hoffmann,
R. W.; Stürmer, R. Chem. Ber. 1994, 127, 2511.
(17) (a) Narasaka, K.; Pai, F.-C. Tetrahedron 1984, 40, 2233.
(b) Chen, K.-M.; Hardtmann, G. E.; Prasad, K.; Repic, O.;
Shapiro, M. J. Tetrahedron Lett. 1987, 28, 155.
(18) Nakata, T.; Tani, Y.; Hatozaki, M.; Oishi, T. Chem. Pharm.
Bull. 1984, 32, 1411.
(19) Kiyooka, S.-i.; Kuroda, H.; Shimasaki, Y. Tetrahedron Lett.
1986, 27, 3009.
(20) The relative 3,4-syn-4,5-syn configuration was secured by
NMR studies of the dioxane moiety.
(4) Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew.
Chem., Int. Ed. Engl. 1985, 24, 1.
(5) (a) Heathcock, C. H.; White, C. T. J. Am. Chem. Soc. 1979,
101, 7076. (b) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Rieger,
D. L. J. Am. Chem. Soc. 1995, 117, 9073. (c) Marco, J. A.;
Carda, M.; Díaz-Oltra, S.; Murga, J.; Falomir, E.; Roeper, H.
J. Org. Chem. 2003, 68, 8577.
(6) For an early example based on a-OTBDPS chiral aldehyde,
see: Esteve, C.; Ferreró, M.; Romea, P.; Urpí, F.; Vilarrasa,
J. Tetrahedron Lett. 1999, 40, 5083.
(7) Ferreró, M.; Galobardes, M.; Martín, R.; Montes, T.; Romea,
P.; Rovira, R.; Urpí, F.; Vilarrasa, J. Synthesis 2000, 1608.
(8) Roush, W. R.; Palkowitz, A. D.; Ando, K. J. Am. Chem. Soc.
1990, 112, 6348.
(9) All new compounds have analytical and spectroscopic data
consistent with the assigned structure. The absolute
configurations were initially established by analogy and
those of 5, 6, 9, 10, and 11 have been later confirmed by
spectroscopic analysis of cyclic derivatives. See, for
instance, ref. 3c.
(10) As expected, the minor diastereomer observed in all cases is
the alternative 4,5-syn isomer. No significant amounts of
anti adducts were indeed detected throughout the overall
study.
(11) Roush, W. R. J. Org. Chem. 1991, 56, 4151.
(12) Overall yields of purified materials are indicated.
Diastereomeric ratios have been established through HPLC
and NMR analysis.
(13) Solsona, J. G.; Romea, P.; Urpí, F. Org. Lett. 2003, 5, 4681.
(14) Tatsuta, K. In Recent Progress in the Chemical Synthesis of
Antibiotics; Lukacs, G.; Ohno, M., Eds.; Springer-Verlag:
Berlin, 1990.
(15) For recent examples, see the following reports and
references therein: (a) Evans, D. A.; Kim, A. S.; Metternich,
R.; Novack, V. J. J. Am. Chem. Soc. 1998, 120, 5921.
(b) Hergenrother, P. J.; Hodgson, A.; Judd, A. S.; Lee,
W.-C.; Martin, S. F. Angew. Chem. Int. Ed. 2003, 42, 3278.
(c) Peng, Z.-H.; Woerpel, K. A. J. Am. Chem. Soc. 2003,
125, 6018.
(21) Unexpectedly, this step turned out to be troublesome.
Debenzylation with Pd(OH)2/C was sluggish in EtOAc and
afforded a complex mixture in MeOH. Better results (60%
yield) were obtained with 10% Pd/C in EtOH, although it
was not possible to prevent partial removal of acetonide
protecting group and the corresponding triol was produced
in 25% yield. Finally, alcohol 16 was isolated in excellent
yield (91%) after 3 h in EtOAc.
(22) Physical and spectroscopic data of ketone 13 are in
agreement with those previously reported. See ref. 16a, 16f.
Compound 13: colorless oil. Rf (hexanes–EtOAc 85:15) =
0.45. [a]D +23.1 (c 1.8, CHCl3). IR (film): n = 2933, 1717,
1111, 1017 cm–1. 1H NMR (400 MHz, CDCl3): d = 7.66–
7.54 (4 H, m, ArH), 7.43–7.36 (6 H, m, ArH), 4.22 (1 H, d,
J = 2.5 Hz, CH3COCHO), 3.73 (1 H, dd, J = 9.6 Hz, J = 1.9
Hz, CHOCHCH2OSi), 3.57 (1 H, dd, J = 10.3 Hz, J = 4.3
Hz, CHxHyOSi), 3.49 (1 H, dd, J = 10.3 Hz, J = 5.7 Hz,
CHxHyOSi), 2.12 (3 H, s, CH3CO), 2.03–1.95 [1 H, m,
OHCCH(CH3)CHO], 1.83–1.78 (1 H, m, CHCH2OSi), 1.48
(3 H, s, CH3CCH3), 1.41 (3 H, s, CH3CCH3), 1.06 [9 H, s,
SiC(CH3)3], 1.05 (3 H, d, J = 6.8 Hz, CH3CHCH2OSi), 0.70
[3 H, d, J = 6.6 Hz, OHCCH(CH3)CHO]. 13C NMR (100.6
MHz, CDCl3): d = 209.3 (C), 135.6 (CH), 135.5 (CH), 133.5
(C), 133.4 (C), 129.7 (CH), 127.7 (CH), 127.6 (CH), 99.4
(C), 79.4 (CH), 75.2 (CH), 64.9 (CH2), 36.7 (CH), 32.4
(CH), 29.8 (CH3), 27.0 (CH3), 26.8 (CH3), 19.3 (C), 19.1
(CH3), 14.2 (CH3), 6.5 (CH3). HRMS (+FAB): m/z calcd for
C28H41O4Si [M + H]+: 469.2774. Found: 469.2762.
Synlett 2004, No. 12, 2127–2130 © Thieme Stuttgart · New York