Organic Letters
Letter
Scheme 5. Reduction of 3-Vinyl-1,2-diazetidines
ACKNOWLEDGMENTS
■
We thank The Leverhulme Trust (RPG-2014-362) for generous
financial support. Crystallographic data were collected using an
instrument that received funding from the European Research
Council under the European Union’s Horizon 2020 research and
innovation program (Grant Agreement No. 637313).
REFERENCES
■
(1) (a) Bull, J. A.; Croft, R. A.; Davis, O. A.; Doran, R.; Morgan, K. F.
Chem. Rev. 2016, 116, 12150. (b) Burkhard, J. A.; Wuitschik, G.; Rogers-
Information for details). This methodology could potentially be
used to develop a new route to chiral 1,2-diamines.15
Selective removal of the protecting groups within 17 was
possible (Scheme 6). The Boc group was removed with TFA to
give 19 in excellent yield. Separately, the tosyl group was cleaved
using Mg in MeOH to provide 20 in 75% yield.
Evans, M.; Muller, K.; Carreira, E. M. Angew. Chem., Int. Ed. 2010, 49,
9052.
(2) (a) Antermite, D.; Degennaro, L.; Luisi, R. Org. Biomol. Chem.
2017, 15, 34. (b) Bott, T. M.; West, F. G. Heterocycles 2012, 84, 223.
(c) Brandi, A.; Cicchi, S.; Cordero, F. M. Chem. Rev. 2008, 108, 3988.
(3) Garnock-Jones, K. P. Drugs 2015, 75, 1823.
̈
(4) (a) Carreira, E. M.; Fessard, T. C. Chem. Rev. 2014, 114, 8257.
(b) Pitts, C. R.; Lectka, T. Chem. Rev. 2014, 114, 7930. (c) Rousseau, G.;
Robin, S. In Modern Heterocyclic Chemistry; Alvarez-Builla, J., Vaquero, J.
J., Barluenga, J., Eds; Wiley-VCH: Weinheim, Germany, 2011; Chapter
3, pp 163−268.
Scheme 6. Selective Deprotection of 1,2-Diazetidine 17
(5) Cheng, X.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 4581.
(6) (a) Iacobini, G. P.; Porter, D. W.; Shipman, M. Chem. Commun.
2012, 48, 9852. See also (b) Xu, S.; Chen, J.; Shang, J.; Qing, Z.; Zhang,
J.; Tang, Y. Tetrahedron Lett. 2015, 56, 6456. (c) Brown, M. J.; Clarkson,
G. J.; Inglis, G. G.; Shipman, M. Org. Lett. 2011, 13, 1686.
(7) Miao, W.; Xu, W.; Zhang, Z.; Ma, R.; Chen, S.-H.; Li, G.
Tetrahedron Lett. 2006, 47, 6835. Doubt has been raised as to whether
these authors produced the reported chiral 3-substituted 1,2-
diazetidines with six-membered 1,3,4-oxadiazine formation more likely
(see ref 8).
(8) Brown, M. J.; Clarkson, G. J.; Fox, D. J.; Inglis, G. G.; Shipman, M.
Tetrahedron Lett. 2010, 51, 382.
(9) Mangion, I.; Strotman, N.; Drahl, M.; Imbriglio, J.; Guidry, E. Org.
Lett. 2009, 11, 3258.
(10) (a) Trost, B. M.; Van Vranken, D. L.; Bingel, C. J. Am. Chem. Soc.
1992, 114, 9327. (b) Trost, B. M.; Bunt, R. C.; Lemoine, R. C.; Calkins,
T. L. J. Am. Chem. Soc. 2000, 122, 5968.
(11) Trost, B. M.; Malhotra, S.; Chan, W. H. J. Am. Chem. Soc. 2011,
133, 7328 and references cited therein.
(12) (a) Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed. 2003, 42,
1900. (b) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18.
(13) Pasto, D. J.; Taylor, R. T. Org. React. 1991, 40, 91.
(14) Hydrogenations using metal catalysts led to partial over-
reduction. For example, reduction [10% Pd/C, H2 (1 atm), MeOH,
rt] of 12b led to formation of 17 (27%) with quantities of TsNH−
N(Boc)(CH2)3CH3 resulting from concomitant reduction of the C(3)−
N bond of the diazetidine ring.
(15) For reviews on 1,2-diamine synthesis, see: (a) Grygorenko, O. O.;
Radchenko, D. S.; Volochnyuk, D. M.; Tolmachev, A. A.; Komarov, I. V.
Chem. Rev. 2011, 111, 5506. (b) Lucet, D.; Le Gall, T.; Mioskowski, C.
Angew. Chem., Int. Ed. 1998, 37, 2580. (c) Bennani, Y. L.; Hanessian, S.
Chem. Rev. 1997, 97, 3161.
In summary, a three-step asymmetric synthesis of enantioen-
riched 3-vinyl-1,2-diazetidines has been developed in which the
two nitrogen atoms are differentially substituted with carbamate
and sulfonamide protecting groups. In the key asymmetric allylic
amination reaction, only the sulfonamide-bearing nitrogen acts
as nucleophile. Crystallography evidence suggests that the
chirality at C-3 exerts stereocontrol over both nitrogen centers
such that all substituents orient themselves trans to their
neighbors. The chemical integrity of the strained 1,2-diazetidines
was maintained during a range of chemical transformations
including (i) Ru-based cross-metathesis; (ii) ozonolysis followed
by hydride reduction; (iii) alkene reduction using diimide; and
(iv) treatment with TFA. However, they can be reductively
cleaved to 1,2-diamines or selectively deprotected under
appropriate conditions. Taken together, these findings suggest
that 3-substituted 1,2-diazetidines may make excellent building
blocks for drug discovery and/or asymmetric catalysis, avenues of
work which are being actively explored in our laboratory.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and characterization data for all
new compounds, copies of 1H and 13C NMR spectra, and
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX