472
M.L. Bolognesi et al. / Il Farmaco 60 (2005) 465–473
Fig. 4
.
Universal template approach to the design of dual binding site AChE inhibitors derived from propidium, tacrine and caproctamine.
[13] S. Hanessian, G. Papeo, M.Angiolini, K. Fettis, M. Beretta,A. Munro,
Moreover, due to the multifaceted pathology ofAD, in the
field of AChEI pharmacotherapy future trends should point
to the development of multipotent drugs, that exploiting inhi-
bition of AChE and hitting different selected targets in the
neurodegeneration cascade, could represent a valuable phar-
macological treatment.
Synthesis of functionally diverse and conformationally constrained
polycyclic analogues of proline and prolinol, J. Org. Chem. 68 (2003)
7204–7218.
[14] P.N. Confalone, E.M. Huie, The stabilized iminium ylide-oleifin [3 +
2] cycloaddition reaction. Total synthesis of Sceletium alkaloid A4, J.
Am. Chem. Soc. 106 (1984) 7175–7178.
[15] G.L. Ellman, K.D. Courtney, V. Andres Jr., R.M. Feather-Stone, A
new and rapid colorimetric determination of acetylcholinesterase
activity, Biochem. Pharmacol. 7 (1961) 88–95.
References
[16] M.D. Gottwald, R.I. Rozanski, Rivastigmine, a brain-region selective
acetylcholinesterase inhibitor for treatingAlzheimer’s disease: review
and current status, Expert Opin. Investig. Drugs 8 (1999) 1673–1682.
[1] J. Hardy, D.J. Selkoe, The amyloid hypothesis ofAlzheimer’s disease:
progress and problems on the road to therapeutics, Science 297 (2002)
353–356.
[17] M. Weinstock, M. Razin, M. Chorev, Z. Tashma, Advances in Behav-
ioral Biology, Plenum Press: New York (1986) 539–551.
[2] S. Capsoni, G. Ugolini, A. Comparini, F. Ruberti, N. Berardi, A. Cat-
taneo, Alzheimer-like neurodegeneration in aged antinerve growth
factor transgenic mice, Proc. Natl. Acad. Sci. USA 97 (2000) 6826–
6831.
[18] B.R. Williams, A. Nazarians, M.A. Gill, A review of rivastigmine: a
reversible cholinesterase inhibitor, Clin. Ther. 25 (2003) 1634–1653.
[19] R. Bullock, The clinical benefits of rivastigmine may reflect its dual
inhibitory mode of action: an hypothesis, Int. J. Clin. Pract. 56 (2002)
206–214.
[3] R.T. Bartus, On neurodegenerative diseases, models, and treatment
strategies: lessons learned and lessons forgotten a generation follow-
ing the cholinergic hypothesis, Exp. Neurol. 163 (2000) 495–529.
[4] A.V. Terry Jr., J.J. Buccafusco, The cholinergic hypothesis of age and
Alzheimer’s disease-related cognitive deficits: recent challenges and
their implications for novel drug development, J. Pharmacol. Exp.
Ther. 306 (2003) 821–827.
[20] E. Giacobini, R. Spiegel, A. Enz, A.E. Veroff, N.R. Cutler, Inhibition
of acetyl- and butyryl-cholinesterase in the cerebrospinal fluid of
patients with Alzheimer’s disease by rivastigmine: correlation with
cognitive benefit, J. Neural Transm. 109 (2002) 1053–1065.
[21] M.L. Bolognesi, V. Andrisano, M. Bartolini, A. Minarini, M. Rosini,
V. Tumiatti, C. Melchiorre, Hexahydrochromeno[4,3-b]pyrrole
derivatives as acetylcholinesterase inhibitors, J. Med. Chem. 44
(2001) 105–109.
[5] K.L. Davis, P. Powchik, Tacrine, Lancet 345 (1995) 625–630.
[6] H.M. Bryson, P. Benfield, Donepezil, Drugs Aging 10 (1997) 234–
239 (discussion 240–231).
[22] M.L. Bolognesi, M. Bartolini, A. Cavalli, V. Andrisano, M. Rosini,
A. Minarini, C. Melchiorre, Design, synthesis, and biological evalua-
tion of conformationally restricted rivastigmine analogues, J. Med.
Chem. 47 (2004) 5945–5952.
[7] J.J. Sramek, E.J. Frackiewicz, N.R. Cutler, Review of the acetylcho-
linesterase inhibitor galanthamine, Expert Opin. Investig. Drugs 9
(2000) 2393–2402.
[8] S.H. Ferris, Evaluation of memantine for the treatment ofAlzheimer’s
disease, Expert Opin. Pharmacother. 4 (2003) 2305–2313.
[9] C. Melchiorre, V. Andrisano, M.L. Bolognesi, R. Budriesi, A. Cavalli,
V. Cavrini, et al., Acetylcholinesterase noncovalent inhibitors based
on a polyamine backbone for potential use against Alzheimer’s dis-
ease, J. Med. Chem. 41 (1998) 4186–4189.
[23] L.K.A. Rahaman, R.M. Scrowston, 7-Substituted benzo[b]thiophenes
and 1,2-benzisothiazoles. Hydroxy- or methoxy-derivatives, J. Chem.
Soc. Perkin Trans. I 12 (1983) 2973–2978.
[24] L.Yaouancq, M. Anissimova, M.-L. Badet-Denisot, B. Badet, Design
and evaluation of mechanism-based inhibitors of D-alanyl-D-alanine
dipeptidase van X, Eur. J. Org. Chem. 21 (2002) 3573–3579.
[10] M. Rosini, R. Budriesi, M.G. Bixel, M.L. Bolognesi, A. Chiarini,
F. Hucho, P. Krogsgaard-Larsen, I.R. Mellor,A. Minarini, V. Tumiatti,
P.N. Usherwood, C. Melchiorre, Design, synthesis, and biological
evaluation of symmetrically and unsymmetrically substituted
methoctramine-related polyamines as muscular nicotinic receptor
noncompetitive antagonists, J. Med. Chem. 42 (1999) 5212–5223.
[11] N.H. Greig, X.F. Pei, T.T. Soncrant, D.K. Ingram, A. Brossi,
Phenserine and ring C hetero-analogues: drug candidates for the
treatment of Alzheimer’s disease, Med. Res. Rev 15 (1995) 3–31.
[12] Q.Yu, N.H. Greig, H.W. Holloway, A. Brossi, Syntheses and anticho-
linesterase activities of (3aS)-N1, N8-bisnorphenserine, (3aS)-
N1,N8-bisnorphysostigmine, their antipodal isomers, and other
potential metabolites of phenserine, J. Med. Chem 41 (1998) 2371–
2379.
[25] J. Sterling,Y. Herzig, T. Goren, N. Finkelstein, D. Lerner, W. Golden-
berg, I. Miskolczi, S. Molnar, F. Rantal, T. Tamas, G. Toth, A. Zagyva,
A. Zekany, J. Finberg, G. Lavian, A. Gross, R. Friedman, M. Razin,
W. Huang, B. Krais, M. Chorev, M.B. Youdim, M. Weinstock, Novel
dual inhibitors of AChE and MAO derived from hydroxy aminoindan
and phenethylamine as potential treatment for Alzheimer’s disease, J.
Med. Chem. 45 (2002) 5260–5279.
[26] M. Weinstock, M. Razin, M. Chorev, A. Enz, Pharmacological evalu-
ation of phenyl-carbamates as CNS-selective acetylcholinesterase
inhibitors, J. Neural Transm. Suppl 43 (1994) 219–225.
[27] C.N. Lieske, R.T. Gepp, J.H. Clark, H.G. Meyer, P. Blumbergs,
C.C. Tseng, Anticholinesterase activity of potential therapeutic
5-(1,3,3-trimethylindolinyl) carbamates, J. Enzyme Inhib. 5 (1991)
215–223.