ChemComm
Communication
transformations catalyzed by monometallic nanoparticles.
Taking advantage of the water-soluble reversibility of these
catalysts, all the transformations proceed well in water under
mild conditions and the catalysts can be recovered and reused
by a simple phase separation process. Detailed mechanistic
studies and other applications of these catalysts in organic
reactions are in progress.
We are grateful to National Nature Science Foundation of
China (20932002, 20972144, 90813008, 21172205, 20772188,
J1030412 and 973 program 2010CB912103).
Notes and references
1 (a) K. Bowden, I. M. Heilbron, E. R. H. Jones and B. C. L. Weeden,
J. Chem. Soc., 1946, 39; (b) G. Cainelli and G. Cardillo, Chromium
oxidation in organic chemistry, Springer, Berlin, 1984.
2 (a) G. ten Brink, I. W. C. E. Arends and R. A. Sheldon, Science, 2000,
287, 1636; (b) Y. Uozumi and R. Nakao, Angew. Chem., Int. Ed., 2003,
42, 194; (c) K. Mori, T. Hara, T. Mizugaki, K. Ebitani and K. Kaneda,
J. Am. Chem. Soc., 2004, 126, 10657; (d) T. Malat and A. Baiker, Chem.
Rev., 2004, 104, 3037; (e) H. Tsunoyama, H. Sakurai, Y. Negishi and
T. Tsukuda, J. Am. Chem. Soc., 2005, 127, 9374; ( f ) Y. H. Ng, S. Ikeda,
T. Harada, Y. Morita and M. Matsumura, Chem. Commun., 2008, 3181.
3 (a) H. Miyamura, R. Matsubara, Y. Miyazaki and S. Kobayashi, Angew.
Chem., Int. Ed., 2007, 46, 4151; (b) J. Zheng, S. Y. Lin, X. H. Zhu,
B. W. Jiang, Z. Yang and Z. Y. Pan, Chem. Commun., 2012, 48, 6235;
(c) D. Tsukakmoto, Y. Shiraishi, Y. Sugano, S. Lchikawa, S. Tanaka
and T. Hirai, J. Am. Chem. Soc., 2012, 134, 6309; (d) C. Shang and
Z.-P. Liu, J. Am. Chem. Soc., 2011, 133, 9938; (e) B. KaRimi and
F. K. Esfahani, Adv. Synth. Catal., 2012, 354, 1319; ( f ) A. Buonerba,
Scheme 1 Control experiments for the reaction mechanism.
Scheme 2 Plausible reaction mechanism.
´
C. Cuomo, S. O. Sanchez, P. Canton and A. Grassi, Chem.–Eur. J.,
with benzaldehyde can be carried out smoothly to obtain the ester
with a good yield (87%) whereas the reaction of o-nitrobenzyl
alcohol with benzoic acid did not work. These results indicated
that the aldehyde rather than the carboxylic acid should be the
intermediate of this transformation.
2012, 18, 709; (g) Z. S. Hou, N. Theyssen, A. Brinkmann and
W. Leitner, Angew. Chem., Int. Ed., 2005, 44, 1346.
4 (a) J. Iqbal and R. R. Srivastava, J. Org. Chem., 1992, 57, 2001;
(b) J. Otera, Chem. Rev., 1993, 93, 1449; (c) K. Ishihara, M. Kubota,
H. Kurihara and H. Yamatoto, J. Am. Chem. Soc., 1995, 117, 4413;
(d) G. W. Breton, J. Org. Chem., 1997, 62, 8952.
In terms of these experimental results and previous reports,5b,6,9b
the possible mechanism is depicted in Scheme 2. First of all,
the alcohol is oxidized to the aldehyde under the catalysis of
Pt/DNA–MMT, Pd/DNA–MMT or Au/DNA–MMT. Then the alde-
hyde is selectively converted to the diol (a) by hydration and a
was rapidly oxidized to the product of acid under the catalysis
of Pd/DNA–MMT, which is the first pathway. The other pathway
is that the alcohol attacks the aldehyde to generate the hemi-
acetal (b) and the product of ester is obtained by oxidation of b
in the presence of Au/DNA–MMT.
In conclusion, we have developed novel Pt, Pd and Au nano-
particle catalysts supported on a hybrid of natural DNA and MMT,
which show higher activity and selectivity for oxidation of primary
alcohols than DNA-templated nanoparticles. Depending on these
catalytic systems, highly efficient formation of the corresponding
aldehydes, carboxylic acids and esters is achieved. Both oxidative
self-esterification as well as cross-esterification of various alcohols
5 (a) J. Zhang, E. Balaraman, G. Leitus and D. Milstein, Organometallics,
2011, 30, 5716; (b) C. Gunanathan, L. J. W. Shimon and D. Milstein,
J. Am. Chem. Soc., 2009, 131, 3146; (c) S. Musa, L. Shaposhnikov,
S. Cohen and D. Gelman, Angew. Chem., Int. Ed., 2011, 50, 3533.
6 (a) F.-Z. Su, J. Ni, H. Sun, Y. Cao, H.-Y. He and K.-N. Fan, Chem.–Eur. J.,
2008, 14, 7131; (b) R. L. Oliveira, P. K. Kiyohara and L. M. Rossi, Green
Chem., 2009, 11, 1366; (c) T. Ishida, M. Nagaoka, T. Akita and M. Haruta,
Chem.–Eur. J., 2008, 14, 8456; (d) S. Gowrisankar, H. Neumann and
M. Beller, Angew. Chem., Int. Ed., 2011, 50, 5139; (e) K. Kaizuka,
H. Miyamura and S. Kabayashi, J. Am. Chem. Soc., 2010, 132, 15096;
( f ) S. Arita, T. Koike, Y. Kayaki and T. Ikariya, Chem.–Asian. J., 2008,
3, 1479.
7 (a) Y. S. Choi, K. H. Wang, M. Z. Xu and I. J. Chung, Chem. Mater.,
2002, 14, 2936; (b) A. Dolbecq, E. Dumas, C. R. Mayer and P. Mialane,
Chem. Rev., 2010, 110, 6009; (c) V. M. Agranovich, Yu. N. Gartstein
and M. Litinskaya, Chem. Rev., 2011, 111, 5179; (d) M. P. Shores,
B. M. Bartlett and D. G. Nocera, J. Am. Chem. Soc., 2005, 127, 17986.
8 (a) T. J. Pinnavaia, Science, 1983, 220, 365; (b) B. M. Choudary,
M. L. Kantam, K. V. S. Ranganath and K. K. Rao, Angew. Chem., Int.
´
´
´
Ed., 2005, 44, 322; (c) B. Veisz, Z. Kiraly, L. Toth and B. Pecz, Chem.
Mater., 2002, 14, 2882; (d) L. X. Shao and M. Shi, Adv. Synth. Catal.,
2003, 345, 963; (e) S. D. Miao, Z. M. Liu, B. X. Han, J. Huang, Z. Y. Sun,
J. L. Zhang and T. Jiang, Angew. Chem., Int. Ed., 2006, 45, 266.
can be performed smoothly. Although bimetallic nanoparticles as 9 (a) Y. Wang, G. H. Ouyang, J. T. Zhang and Z. Y. Wang, Chem.
Commun., 2010, 46, 7912; (b) Y. Wang, D. P. Zhu, L. Tang, S. J. Wang
and Z. Y. Wang, Angew. Chem., Int. Ed., 2011, 50, 1; (c) L. Tang,
H. Y. Sun, Y. F. Li, Z. G. Zha and Z. Y. Wang, Green chem., 2012,
efficient catalysts for selective oxidation of primary alcohols to the
aldehydes, carboxylic acids and esters have been reported,6e to
the best of our knowledge, this is the first example of these
14, 3423.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.