Studies on the Total Synthesis of (-)-CP-263,114
Takehiko Yoshimitsu,* Shuji Sasaki, Yoshimasa Arano, and Hiroto Nagaoka*
Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
Received July 30, 2004
Alkoxyl radicals have a wide range of applications in organic synthesis due to their remarkable
chemical properties in molecular transformation. The present study shows two types of alkoxyl
radicals (primary vs tertiary) to selectively undergo dehydrogenation and â-scission to give rise to
key structural elements of (-)-CP-263,114 (1). By alkoxyl radical transformation followed by
installation of the C19-C25 (CP numbering) side chain and the bridged bisacetal unit, the
functionalized CP precursor 2 was obtained.
Introduction:
(-)-CP-263,114 (phomoidride B) (1), a bioactive fungal
metabolite,1 is of considerable interest to the synthetic
chemical community (Figure 1). Fascination with the CP
molecule stems from the structural uniqueness as well
as the potent inhibitory activity toward ras-farnesyl
transferase and suqualene synthase, both current targets
of medicinal concern. Four successful total syntheses of
12 appear in the literature and new routes to produce
this natural product are avidly being sought.3,4
We previously reported an enantioselective approach
based on alkoxyl radical reactions to a simple core
structure of (-)-CP-263,114 (1).5a,6 In this study, the
synthesis of the advanced CP precursor 2 was conducted
through the following key transformations (Scheme 1):
(1) introduction of the oxygen functionality at C26 via
primary alkoxyl radical-mediated dehydrogenation (10
f 11 f 12), (2) formation of bridgehead double bond via
iodo transfer â-scission of a tertiary alkoxyl radical
intermediate followed by reduction of iodo ether (8 f 7
f 5), and (3) production of the polycyclic caged CP-motif
2 via thioketalization and subsequent bisacetal unit
construction (4 f 3 f 2).
FIGURE 1. Functionalized CP precursor 2.
Results and Discussion
Alkoxyl radicals are widely used in the synthesis of
organic molecules owing to chemical properties that allow
useful reactions such as hydrogen abstraction and â-scis-
sion.7,8 Alkoxyl radical reactions thus serve as means for
key transformation in the synthesis of various natural
products.9-13 The pathways of these reactions generally
depend on the types of alkoxyl radicals generated:
(3) Selected recent papers from other laboratories; (a) Davies, H.
M. L.; Ren, P. D. Tetrahedron Lett. 2000, 41, 9021-9024. (b) Devaux,
J.-F.; O’Neil, S. V.; Guillo, N.; Paquette, L. A. Collect. Czech. Chem.
Commun. 2000, 65, 490-510. (c) Crimmins, M. T.; Hauser, E. B. Org.
Lett. 2000, 2, 281-284. (d) Baldwin, J. E.; Adlington, R. M.; Roussi,
F.; Bulger, P. G.; Marquez, R.; Mayweg, A. V. W. Tetrahedron 2001,
57, 7409-7416. (e) Isakovic, L.; Ashenhurst, J. A.; Gleason, J. L. Org.
Lett. 2001, 3, 4189-4192. (f) Toyota, M.; Majo, V. J.; Ihara, M.
Tetrahedron Lett. 2001, 42, 1555-1558. (g) Ohmori, N. J. Chem. Soc.,
Perkin Trans. 1 2002, 755-767. (h) Matsushita, T.; Ashidas, H.;
Kimachi, T.; Takemoto, Y. Chem. Commun. 2002, 814-815. (i) Su-
likowski, G. A.; Liu, W.; Agnelli, F.; Corbett, R. M.; Luo, Z.; Hersh-
berger, S. J. Org. Lett. 2002, 4, 1451-1454. (j) Armstrong, A.; Critchley,
T. J.; Gourdel-Martin, M.-E.; Kelsey, R. D.; Mortlock, A. A. Tetrahedron
Lett. 2002, 43, 6027-6030. (k) Spiegel, D. A.; Njardarson, J. T.; Wood,
J. L. Tetrahedron 2002, 58, 6545-6554. (l) Bio, M. M.; Leighton, J. L.
J. Org. Chem. 2003, 68, 1693-1700. (m) Banwell, M. G.; Coster, M.
J.; Edwards, A. J.; Voegtle, M. Aust. J. Chem. 2003, 56, 577-583. (n)
Clive, D. L. J.; Sgarbi, P. W. M.; He, X.; Sun, S.; Zhang, J.; Ou, L.
Can. J. Chem. 2003, 81, 811-824.
(4) For reviews, see: (a) Diederichsen, U. Nachr. Chem. Tech. Lab.
1999, 47, 1423-1427. (b) Starr, J. T.; Carreira, E. M. Angew. Chem.,
Int. Ed. 2000, 39, 1415-1412. (c) Hepworth, D. Chem. Ind. (London)
2000, 2, 59-65. (d) Nicolaou, K. C.; Baran, P. S. Angew. Chem., Int.
Ed. 2002, 41, 2678-2720. (e) Spiegel, D. A.; Njardarson, J. T.;
McDonald, I. M.; Wood, J. L. Chem. Rev. 2003, 103, 2691-2727.
(5) (a) Yoshimitsu, T.; Yanagisawa, S.; Nagaoka, H. Org. Lett. 2000,
2, 3751-3754. (b) Yoshimitsu, T.; Yanagiya, M.; Nagaoka, H. Tetra-
hedron Lett. 1999, 40, 5215-5218.
(1) (a) Dabrah, T. T.; Kaneko, T.; Massefski, W., Jr.; Whipple, E. B.
J. Am. Chem. Soc. 1997, 119, 1594-1598. (b) Spencer, P.; Agnelli, F.;
Williams, H. J.; Keller, N. P.; Sulikowski, G. A. J. Am. Chem. Soc.
2000, 122, 420-423. (c) Spencer, P.; Angelli, F.; Sulikowski, G. A. Org.
Lett. 2001, 3, 1443-1445. (d) Sulikowski, G. A.; Angelli, F.; Spencer,
P.; Koomen, J. M.; Russell, D. H. Org. Lett. 2002, 3, 1447-1450.
(2) (a) Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Choi, H.-S.; Yoon,
W. H.; He, Y.; Fong, K. C. Angew. Chem., Int. Ed. 1999, 38, 1669-
1675. (b) Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Fong, K. C.; He,
Y.; Yoon, W. H.; Choi, H.-S. Angew. Chem., Int. Ed. 1999, 38, 1676-
1678. (c) Nicolaou, K. C.; Jung, J.-K.; Yoon, W. H.; He, Y.; Zhong, Y.-
L.; Baran, P. S. Angew. Chem., Int. Ed. 2000, 39, 1829-1832. (d)
Nicolaou, K. C.; Jung, J.; Yoon, W. H.; Fong, K. C.; Choi, H.-S.; He, Y.;
Zhong, Y.-L.; Baran, P. S. J. Am. Chem. Soc. 2002, 124, 2183-2189.
(e) Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Fong, K. C.; Choi, H.-S.
J. Am. Chem. Soc. 2002, 124, 2190-2201. (f) Nicolaou, K. C.; Zhong,
Y.-L.; Baran, P. S.; Jung, J.; Choi, H.-S.; Yoon, W. H. J. Am. Chem.
Soc. 2002, 124, 2202-2211. (g) Tan, Q.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 2000, 39, 4509-4511. (h) Chen, C.; Layton, M. E.;
Sheehan, S. M.; Shair, M. D. J. Am. Chem. Soc. 2000, 122, 7424-
7425. (i) Waizumi, N.; Itoh, T.; Fukuyama, T. J. Am. Chem. Soc. 2000,
122, 7825-7826. (j) Hayashi, Y.; Itoh, T.; Fukuyama, T. Org. Lett. 2003,
5, 2235-2238.
10.1021/jo048681u CCC: $27.50 © 2004 American Chemical Society
Published on Web 11/11/2004
9262
J. Org. Chem. 2004, 69, 9262-9268