ORGANIC
LETTERS
2011
Vol. 13, No. 17
4486–4489
A Concise Synthetic Approach to
the Sorbicillactones: Total
Synthesis of Sorbicillactone A
and 9-epi-Sorbicillactone A
Kelly A. Volp, Diane M. Johnson, and Andrew M. Harned*
Department of Chemistry, University of Minnesota;Twin Cities, 207 Pleasant Street SE,
Minneapolis, Minnesota 55455, United States
Received May 6, 2011
ABSTRACT
A concise (12 step) total synthesis of sorbicillactone A and 9-epi-sorbicillactone A is reported. Unlike typical routes to the sorbicillinoids, this
strategy does not start from sorbicillin and allows for the production of the bicyclic core on a multigram scale. The intramolecular conjugate
addition of a tethered malonate serves as an effective means of introducing the lactone ring and provides a synthetic handle for installing the
amide nitrogen.
The sorbicillinoid natural products are a family of
bioactive molecules that have been isolated from
fungal species found in both terrestrial and marine
environments.1 Various members of the family have de-
monstrated activity in radical scavenging, anticancer, and
tumor necrosis factor-R inhibition screens, among others.
Synthetic efforts toward these natural products have typi-
cally involved an initial oxidative dearomatization of
sorbicillin or a close derivative.2,3 This generates an
intermediate similar to sorbicillinol (1, Scheme 1) that is
poised for dimerization, conjugate addition, and other
diversification reactions.1 While these studies have con-
firmed many of the biosynthetic hypotheses4 concerning
these compounds, their reliance on sorbicillin as a starting
materiallimitsthenumberofanalogs thatcan be generated
for further structureꢀactivity relationship studies.
In 2003, Bringmann and co-workers reported the iso-
lation of sorbicillactones A (2) and B (3).5 Structurally,
these compounds are interesting as they are the first, and to
date only, sorbicillinoids containing an amino acid residue
(Scheme 1). This introduces synthetic challenges that are
not present in other members of the family. The biological
activity of these compounds is also quite interesting:
while 2 demonstrated selective antileukemia activity, the
(1) Review: Harned, A. M.; Volp, K. A. Manuscript submitted.
(2) (a) Barnes-Seeman, D.; Corey, E. J. Org. Lett. 1999, 1, 1503–1504.
(b) Pettus, L. H.; Van de Water, R. W.; Pettus, T. R. R. Org. Lett. 2001,
3, 905–908. (c) Nicolaou, K. C.; Jautelat, R.; Vassilikogiannakis, G.;
Baran, P. S.; Simonsen, K. B. Chem.;Eur. J. 1999, 5, 3651–3665. (d)
Nicolaou, K. C.; Vassilikogiannakis, G.; Simonsen, K. B.; Baran, P. S.;
Zhong, Y.-L.; Vidali, V. P.; Pitsinos, E. N.; Couladouros, E. A. J. Am.
Chem. Soc. 2000, 122, 3071–3079. (e) Nicolaou, K. C.; Simonsen, K. B.;
Vassilikogiannakis, G.; Baran, P. S.; Vidali, V. P.; Pitsinos, E. N.;
Couladouros, E. A. Angew. Chem., Int. Ed. 1999, 38, 3555–3559. (f)
Hong, R.; Chen, Y.; Deng, L. Angew. Chem., Int. Ed. 2005, 44, 3478–
3481.
(4) (a) Abe, N.; Sugimoto, O.; Tanji, K.-i.; Hirota, A. J. Am. Chem.
Soc. 2000, 122, 12606–12607. (b) Abe, N.; Arakawa, T.; Yamamoto, K.;
Hirota, A. Biosci. Biotechnol. Biochem. 2002, 66, 2090–2099.
€
(5) (a) Bringmann, G.; Lang, G.; Muhlbacher, J.; Schaumann, K.;
€
€
Steffens, S.; Rytik, P. G.; Hentschel, U.; Morschhauser, J.; Muller,
W. E. G. Sorbicillactone A: A Structurally Unprecedented Bioactive
Novel-Type Alkaloid from a Sponge-Derived Fungus. In Sponges
(Porifera); M€uller, W. E. G., Ed.; Springer Verlag: Berlin, 2003; pp
231ꢀ253. (b) Bringmann, G.; Lang, G.; Gulder, T. A. M.; Tsuruta,
€
H.; Muhlbacher, J.; Maksimenka, K.; Steffens, S.; Schaumann, K.;
(3) For an alternative approach, see: Wood, J. L.; Thompson, B. D.;
€
€
Stohr, R.; Wiese, J.; Imhoff, J. F.; Perovic-Ottstadt, S.; Boreiko, O.;
€
Muller, W. E. G. Tetrahedron 2005, 61, 7252–7265.
Yusuff, N.; Pflum, D. A.; Matthaus, M. S. P. J. Am. Chem. Soc. 2001,
123, 2097–2098.
r
10.1021/ol201211f
Published on Web 07/29/2011
2011 American Chemical Society