L. C. Hirayama et al. / Tetrahedron Letters 46 (2005) 2315–2318
Table 3. Enantioselective allylation using 1a as a chiral promotera
2317
References and notes
1. For reviews, see: (a) Denmark, S. E.; Almstead, N. G.
Allylation of Carbonyls: Methodology and Stereochemis-
try. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-
VCH: Weinheim, 2000; pp 299–402; (b) Denmark, S. E.;
Fu, J. Chem. Rev. 2003, 103, 2763–2793.
Entry
R
% Yieldb
% Eec (S)d
2. For recent examples, see: (a) Nokami, J.; Nomiyama, K.;
Shafi, S. M.; Kataoka, K. Org. Lett. 2004, 6, 1261–1264;
(b) Lee, C.-L. K.; Lee, C.-H. A.; Tan, K.-T.; Loh, T.-P.
Org. Lett. 2004, 6, 1281–1283; (c) Lee, C.-H. A.; Loh,
T.-P. Tetrahedron Lett. 2004, 45, 5819–5822; (d) Yanagi-
sawa, A.; Nakamura, Y.; Arai, T. Tetrahedron: Asymme-
try 2004, 15, 1909–1913; (e) Gravel, M.; Lachance, H.; Lu,
X.; Hall, D. G. Synthesis 2004, 1290–1302; (f) Wong,
W.-L.; Lee, C.-S.; Leung, H.-K.; Kwong, H.-L. Org.
Biomol. Chem. 2004, 2, 1967–1969; (g) Zanoni, G.;
Gladiali, S.; Marchetti, A.; Piccinini, P.; Tredici, I.; Vida,
G. Angew. Chem., Int. Ed. 2004, 43, 846–849; (h) Malkov,
A. V.; Bell, M.; Orsini, M.; Pernazza, D.; Massa, A.;
Herrmann, P.; Meghani, P.; Kocovsky, P. J. Org. Chem.
2003, 68, 9659–9668; (i) Lachance, H.; Lu, X.; Gravel, M.;
Hall, D. G. J. Am. Chem. Soc. 2003, 125, 10160–10161; (j)
Rowlands, G. J.; Barnes, W. K. Chem. Commun. 2003,
2712–2713; (k) Hanawa, H.; Uraguchi, D.; Konishi, S.;
Hashimoto, T.; Maruoka, K. Chem. Eur. J. 2003, 9, 4405–
4413; (l) Weissberg, A.; Portnoy, M. Chem. Commun.
2003, 1538–1539; (m) Kubota, K.; Leighton, J. L. Angew.
Chem., Int. Ed. 2003, 42, 946–948; (n) Hanawa, H.;
Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2003,
125, 1708–1709; (o) Denmark, S. E.; Fu, J. Chem.
Commun. 2003, 167–170; (p) Kennedy, J. W. J.; Hall, D.
G. Angew. Chem., Int. Ed. 2003, 42, 4732–4739; (q) Massa,
A.; Malkov, A. V.; Kocovsky, P.; Scettri, A. Tetrahedron
Lett. 2003, 44, 7179–7181; (r) Kinnaird, J. W. A.; Ng, P.
Y.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem.
Soc. 2002, 124, 7920–7921; (s) Maruoka, K. Pure Appl.
Chem. 2002, 74, 123–128; (t) Malkov, A. V.; Orsini, M.;
Pernazza, D.; Muir, K. W.; Langer, V.; Meghani, P.;
Kocovsky, P. Org. Lett. 2002, 4, 1047–1049; (u) Rama-
chandran, P. V. Aldrichim. Acta 2002, 35, 23–25.
3. For reviews, see: (a) Chemler, S. R.; Roush, W. R.
Recent Applications of the Allylation Reaction to the
Synthesis of Natural Products. In Modern Carbonyl
Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000;
pp 403–490; (b) Yamamoto, Y. Acc. Chem. Res. 1987, 20,
243–249.
4. For recent examples see: (a) Kim, J. H.; Seo, W. D.; Lee, J.
H.; Lee, B. W.; Park, K. H. Synthesis 2003, 2473–2478; (b)
Ramachandran, P. V.; Liu, H.; Reddy, M. V. R.; Brown,
H. C. Org. Lett. 2003, 5, 3755–3757; (c) Sabui, S. K.;
Venkateswaran, R. V. Tetrahedron 2003, 59, 8375–8381;
(d) Huang, J.-M.; Xu, K.-C.; Loh, T.-P. Synthesis 2003,
755–764; (e) Skaanderup, P. R.; Madsen, R. J. Org. Chem.
2003, 68, 2115–2122; (f) Marshall, J. A.; Piettre, A.; Paige,
M. A.; Valeriote, F. J. Org. Chem. 2003, 68, 1771–1779;
(g) Loh, T.-P.; Song, H.-Y. Synlett 2002, 2119–2121; (h)
Carda, M.; Rodriguez, S.; Segovia, B.; Marco, J. A.
J. Org. Chem. 2002, 67, 6560–6563.
1
Ph
90
92
94
97
92
97
90
92
94
99
93
93
89
88
79
87
78
80
93
76
80
93e
2
4-CH3O–C6H4
o-CH3–C6H4
m-CH3–C6H4
p-CH3–C6H4
2-Cl–C6H4
3-Cl–C6H4
4-Cl–C6H4
4-CH3O2C–C6H4
4-CN–C6H4
Cyclohexyl
3
4
5
6
7
8
9
10
11
a Reactions run with In0 (2.0 mmol), 1a (2.0 mmol), pyridine (2.0 mmol),
allyl bromide (2.0 mmol), and aldehyde (1.0 mmol) in THF/n-hexane
at À78°C for 1.5 h.
b Isolated yield of analytically pure product.
c Determined by chiral GC analysis.
d Absolute configuration determined by comparison of the optical
rotation with literature value,7 all others were assigned by analogy.
e
Enantiomeric excess determined by chiral GC analysis of the acetyl-
ated homoallylic alcohol.
entries 2 and 5) give a higher enantiomeric excess than
those with an electron-withdrawing group in the para-
position (Table 3, entries 9 and 10).11 Apparently, elec-
tron-withdrawing groups increase the reactivity of the
aldehyde functionality, therefore decreasing the enantio-
selectivity of the reaction.
In summary, we have demonstrated a general method for
the indium-promoted enantioselective allylation of both
aromatic and aliphatic aldehydes using commercially
available (1S,2R)-(+)-2-amino-1,2-diphenylethanol as a
chiral auxiliary and using only two equivalents of allyl
bromide. The homoallylic alcohol products are obtained
in high enantiomeric excesses and in excellent yields and
purity. Furthermore, the amino alcohol ligand can be
recovered via a simple acid–base extraction.12 We are
presently extending this method to functionalized allylic
halides, and studies to elucidate mechanistic details are
also currently underway.
Acknowledgements
The authors thank LubovPasumansky for her technical
support.
5. For a review see: (a) Araki, S.; Hirashita, T. Indium in
Organic Synthesis. In Main Group Metals in Organic
Synthesis; Yamamoto, H., Oshima, K., Eds.; Wiley-VCH:
Weinheim, 2004; pp 323–386; (b) Nair, V.; Ros, S.;
Jayan, C. N.; Pillai, B. S. Tetrahedron 2004, 60, 1959–
1982; (c) Podlech, J.; Maier, T. C. Synthesis 2003, 633–
655; (d) Li, C.-J.; Chan, T.-H. Tetrahedron 1999, 55,
11149–11176.
Supplementary data
Experimental procedures and characterization data for
homoallylic alcohol products and synthesized ligands.
This material is available free of charge via the
WWW. Supplementary data associated with this article
6. For recent examples see: (a) Paquette, L. A. Synthesis
2003, 765–774; (b) Loh, T.-P.; Yin, Z.; Song, H.-Y.; Tan,