U. Bhoga et al. / Tetrahedron Letters 45 (2004) 9483–9485
9485
5. Kim, S. W.; Yeo, W. H.; Ko-young, S.; Kim, S. K.
Saengyak Hakhoechi. 1997, 28, 209–214.
1H), 7.64 (ddd, J = 8.3, 6.8, 1.7Hz, 1H), 8.00 (dd,
J = 8.6, 1.5Hz, 1H), 8.19 (dd, J = 8.3, 1.7Hz, 1H).
6. (a) Tuppy, H.; Bohm, F. Angew. Chem. 1956, 68, 376–392;
(b) Tuppy, H.; Bohm, F. Monatsh. Chem. 1956, 87, 720–
724.
7. Yazima, T.; Mankato, K. Agric. Biol. Chem. 1980, 44,
235–243.
3. 2,4,6-Trimethoxyquinolinyl-3-acetaldehyde 8b
1
Yield 42%, mp 111ꢁC, H NMR (300MHz, CDCl3): d
8. Diment, J. A.; Ritchie, E.; Taylor, W. C. Aust. J. Chem.
1969, 22, 1797–1801.
3.61 (d, J = 3Hz, 2H, CH2), 3.77 (s, 3H, OCH3), 3.81
(s, 3H, OCH3), 4.09 (s, 3H, OCH3), 7.12 (d,
J = 1.5Hz, 1H), 7.18 (dd, J = 8, 1.5Hz, 1H), 7.48 (d,
J = 8Hz, 1H), 9.72 (t, J = 3Hz, 1H, CHO).
9. (a) Grundon, M. F.; McCorkindale, N. J. Chem. Ind.
1956, 13, 1091–1092; (b) Grundon, M. F.; McCorkindale,
N. J. Chem. Ind. 1957, 417, 2177–2179; (c) Grundon, M.
F.; Collins, J. F.; Donnelly, W. J.; Harrison, D. M.;
Spyropoulos, C. G. J. Chem. Soc., Chem. Commun. 1972,
18, 1029–1031.
10. Sekiba, T. Bull. Chem. Soc. Jpn. 1973, 46, 577–582.
11. Cooke, R. G.; Haynes, H. F. Aust. J. Chem. 1958, 11, 221–
230.
12. Sato, T.; Ohta, M. Bull. Chem. Soc. Jpn. 1958, 31, 161–
163.
13. Pai, B. R.; Prabhakar, S.; Santhanam, P. S.; Sudarsanam,
V. Indian J. Chem. 1964, 2, 491–492.
4. Furoquinoline alkaloids
3-Oxiranylquinolines (7a–d) and quinolinylacetalde-
hydes (8b–d) (1.3mmol) were separately heated with
polyphosphoric acid at125–130 ꢁC for 2h. The reaction
mixture was poured onto crushed ice (10g), neutralized
with aqueous sodium bicarbonate and extracted with
ether (5 · 10mL). The combined organic layer was
washed with water and dried (Na2SO4). Evaporation
of the solvent furnished a residue, which was purified
14. (a) Narasimhan, N. S.; Paradkar, M. V.; Alurkar, R. H.
Tetrahedron 1971, 27, 1351–1356; (b) Narasimhan, N. S.;
Mali, R. S. Tetrahedron 1974, 30, 4153–4157.
15. Kuwayama, Y.; Ota, T.; Mikata, T.; Kanda, H. Yak-
ugakuzasshi 1968, 88, 1050–1053.
by chromatography over silica gel using benzene as elu-
21,22
entot afford furoquinoline alkaloids. Dictamnine 1
was obtained in 70% yield using the above procedure.
16. Rajamanickam, P.; Shanmugam, P. Indian J. Chem. 1987,
26B, 910–913.
17. Narasimhan, N. S.; Paradkar, M. V. Chem. Ind. 1967,
831–832.
18. Narasimhan, N. S.; Paradkar, M. V.; Alurkar, R. H.
Tetrahedron 1970, 27, 1347–1355.
Acknowledgements
19. (a) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965,
87, 1353–1355; (b) Treatment of trimethylsulfonium
iodide with a strong base (60% NaH in DMSO–THF)
gave a solution of dimethylsulfonium methylide. This heat
labile reagent liberated in situ is an exceedingly selective
methylene transfer reagent, which is of great use for
converting carbonyl compounds into epoxides. In this
reaction, THF is used to prevent freezing of the reaction
The authors thank the Head, Department of Chemistry,
Garware Research Centre, University of Pune and the
Director, IICT for their constant encouragement and
providing ample facilities.
References and notes
mixture.
Reactions
involving
dimethylsulfonium
1. Grundon, M. F.; McCorkindale, N. J. J. Chem. Soc. 1957,
2177–2185.
methylide are generally carried out at ice-cold tempera-
tures, since it is very sensitive to heat.
2. Wolter, B.; Eilert, V. Planta Med. 1981, 43, 166–174.
3. Hudson, J. B.; Graham, E. A.; Chan, G. C.; Towers, G. H.
N. Photochem. Photobiol. 1985, 42, 523–581.
4. Mizuta, M.; Kannamori, H. Mutat. Res. 1985, 144, 221–225.
20. Ohta, T.; Mori, Y. Ann. Rept. Tokyo Coll. Pharm. 1954, 4,
261–264; . Chem. Abstr. 1956, 50, 998.
21. Werny, S. P. J. Tetrahedron 1963, 19, 1293–1305.
22. Briggs, J. H.; Cambia, R. Tetrahedron 1958, 2, 256–270.