ORGANIC
LETTERS
2005
Vol. 7, No. 2
299-301
Organolithium-Mediated Diversification
of Peptide Thiazoles
Shaojiang Deng and Jack Taunton*
Department of Cellular and Molecular Pharmacology, UniVersity of California,
San Francisco, 600 16th Street, San Francisco, California 94143
Received November 12, 2004
ABSTRACT
We report a one-step, racemization-free method for the diversification of peptide thiazoles via direct lithiation of the thiazole ring. The method
is compatible with N-Boc, N-trityl, carboxylic ester, and carboxamide protecting groups and has been used to directly functionalize the thiazole
ring of cyclopeptide natural products.
Peptide thiazoles are common substructures of macrocyclic
natural products1 that exhibit a range of biological activities,
including potent immunosuppression,2 inhibition of bacterial
protein synthesis,3 and actin filament stabilization.4 In
addition, macrocyclic peptides containing thiazoles have been
synthesized with the aim of creating conformationally
preorganized scaffolds, which can potentially interact with
large protein surfaces and thus disrupt protein-protein
interactions.5
lack C5 substituents.6 To increase the structural diversity of
macrocyclic peptide thiazoles, we sought a method that
would allow facile substitution at C5 of the thiazole ring.
Existing methods for the synthesis of 5-substituted dipeptide
thiazoles require 4-7 steps after incorporation of the C5
substituent.7 A more efficient route would place the C5
diversification step as late as possible, using fully assembled
peptide thiazoles.
We considered that direct lithiation of peptide thiazoles
would provide an efficient C5 diversification strategy.
Although C5 lithiation of 2,4-disubstituted thiazoles is
precedented,8 lithiation of peptide thiazoles has not been
reported previously. Here, we report the direct lithiation of
The common biosynthetic precursor of peptide thiazoles
is cysteine, the â-carbon of which becomes C5 of the thiazole
heterocycle (eq 1).1a Perhaps because of this biosynthetic
(4) Marquez, B. L.; Watts, K. S.; Yokochi, A.; Roberts, M. A.; Verdier-
Pinard, P.; Jimenez, J. I.; Hamel, E.; Scheuer, P. J.; Gerwick, W. H. J. Nat.
Prod. 2002, 65, 866.
(5) (a) Wipf, P.; Fritch, P. C.; Geib, S. J.; Sefler, A. M. J. Am. Chem.
Soc. 1998, 120, 4105. (b) Somogyi, L.; Haberhauer, G.; Rebek, J., Jr.
Tetrahedron 2001, 57, 1699. (c) Singh, Y.; Stoermer, M. J.; Lucke, A. J.;
Glenn, M. P.; Fairlie, D. P. Org. Lett. 2002, 4, 3367.
constraint, the majority of peptide thiazole natural products
(6) For examples of peptide thiazole natural products with 5-methyl and
5-methoxymethyl substituents, see: (a) Selva, E.; Beretta, G.; Montanini,
N.; Saddler, G. S.; Gastaldo, L.; Ferrari, P.; Lorenzetti, R.; Landini, P.;
Ripamonti, F.; Goldstein, B. P. J. Antibiot. 1991, 44, 693. (b) Shimanaka,
K.; Kinoshita, N.; Iinuma, H.; Hamada, M.; Takeuchi, T. J. Antibiot. 1994,
47, 668.
(7) (a) Gordon, T. D.; Singh, J.; Hansen, P. E.; Morgan, B. A.
Tetrahedron Lett. 1993, 34, 1901. (b) Buchanan, J. L.; Mani, U. N.; Plake,
H. R.; Holt, D. A. Tetrahedron Lett. 1999, 40, 3985. (c) Suzuki, T.;
Nagasaki, A.; Okumura, K.; Shin, C.-G. Heterocycles 2001, 55, 835. (d)
Nagasaki, A.; Adachi, Y.; Yonezawa, Y.; Shin, C.-G. Heterocycles 2003,
60, 321.
(1) For a review on biosynthesis, see: (a) Roy, R. S.; Gehring, A. M.;
Milne, J. C.; Belshaw, P. J.; Walsh, C. T. Nat. Prod. Rep. 1999, 16, 249.
For reviews on isolation, see: (b) Jin, Z. Nat. Prod. Rep. 2003, 20, 584
and references contained therein.
(2) Sasse, F.; Steinmetz, H.; Schupp, T.; Petersen, F.; Memmert, K.;
Hofmann, H.; Heusser, C.; Brinkmann, V.; Von Matt, P.; Hofle, G.;
Reichenbach, H. J. Antibiot. 2002, 55, 543.
(3) (a) Rodnina, M. V.; Savelsbergh, A.; Matassova, N. B.; Katunin, V.
I.; Semenkov, Y. P.; Wintermeyer, W. Proc. Natl. Acad. Sci. U.S.A. 1999,
96, 9586. (b) Cameron, D. M.; Thompson, J.; March, P. E.; Dahlberg, A.
E. J. Mol. Biol. 2002, 319, 27.
10.1021/ol047660j CCC: $30.25
© 2005 American Chemical Society
Published on Web 12/17/2004