Chemistry Letters Vol.33, No.12 (2004)
1571
ꢀ
Table 1. Selected bond lengths (A) for compounds (E,E)-1b,
(E,E)-4, 2, and 8
S. Nagase, Bull. Chem. Soc. Jpn., 65, 2297 (1992). d) N.
Yamada, K. Abe, K. Toyota, and M. Yoshifuji, Org. Lett., 4,
569 (2002).
(E,E)-4
(E,E)-1ba
2b
8c
2
3
a) M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, and T.
Higuchi, J. Am. Chem. Soc., 103, 4587 (1981); 104, 6167
(1982). b) M. Yoshifuji, J. Organomet. Chem., 611, 210 (2000).
a) K. Toyota, K. Tashiro, and M. Yoshifuji, Chem. Lett., 1991,
2079. b) K. Toyota, K. Masaki, T. Abe, and M. Yoshifuji, Chem.
Lett., 1995, 221. c) T. Minami, H. Okamoto, S. Ikeda, R.
Tanaka, F. Ozawa, and M. Yoshifuji, Angew. Chem., Int. Ed.,
40, 4501 (2001). d) F. Ozawa, S. Kawagishi, T. Ishiyama,
and M. Yoshifuji, Organometallics, 23, 1325 (2004). e) M.
Yoshifuji, J. Synth. Org. Chem. Jpn., 61, 1116 (2003) and
references cited therein.
P(1)–C(1)
P(1)–C(9)
C(1)–C(2)
C(2)–C(3)
C(1)–C(1)ꢀ
C(2)–C(2)ꢀ
1.669(2)
1.841(1)
1.488(2)
1.430(2)
1.515(6)
1.380(2)
1.690(8)
1.861(6)
1.467(10)
—
1.535(8)
1.380(9)
—
—
1.489d
1.423d
1.580
1.362
—
—
—
1.422d
—
1.338
aData taken from Ref. 1a. bData taken from Ref. 5a. cData taken from
Ref. 11. dTaking approximate C2v symmetry of the molecule into ac-
count, the corresponding two bond lengths are averaged.
4
5
‘‘Multiple Bonds and Low Coordination in Phosphorus
Chemistry,’’ ed. by M. Regitz and O. J. Scherer, Georg Thieme
Verlag, Stuttgart (1990).
a) P. R. Buckland, N. P. Hacker, and J. F. W. McOmie, J. Chem.
Soc., Perkin Trans. 1, 1983, 1443. b) N. P. Hacker, F. W.
McOmie, J. Meunier-Piret, and M. Van Meerssche, J. Chem.
Soc., Perkin. Trans. 1, 1982, 19, and references cited therein.
a) F. Weygand, G. Eberhardt, H. Linden, F. Schafer, and I.
Eigen, Angew. Chem., 65, 525 (1953). b) W. J. Schmitt, E. J.
Moriconi, and W. F. O’Connor, J. Am. Chem. Soc., 77, 5640
(1955).
6
7
8
E. J. Corey and P. L. Fuchs, Tetrahedron Lett., 1972, 3769.
a) G. Markl and P. Kreitmeier, Angew. Chem., Int. Ed. Engl., 27,
¨
1360 (1988). b) A. H. Cowley, J. E. Kilduff, N. C. Norman, M.
Pakulski, J. L. Atwood, and W. E. Hunter, J. Am. Chem. Soc.,
105, 4845 (1983).
9
(E,E)-4: Yellow solid, mp >275 ꢁC (decomp.); 1H NMR (400
MHz, CDCl3) ꢁ ¼ 1:53 (18H, p-t-Bu), 1.59 (36H, o-t-Bu), 5.64
3
3
Figure 2. UV–vis spectra of (E,E)-1a, (E,E)-1b, and (E,E)-4 in
CH2Cl2.
(2H, d, JHH ¼ 8:0 Hz, arom.), 7.00 (2H, t, JHH ¼ 7:6 Hz,
3
arom.), 7.43 (2H, t, JHH ¼ 7:4 Hz, arom.), 7.65 (4H, m-Mesꢀ),
3
and 8.47 (2H, d, JHH ¼ 8:4 Hz, arom.); 13C{1H} NMR (100
We then prepared several transition metal complexes of 4 as
follows. Reaction of (E,E)-4 with [group(6) transition metal]-
[(bicyclo[2.2.1]hepta-2,5-diene)tetracarbonyl] gave the corre-
sponding chelate tetracarbonylmetal complexes 9Cr,Mo,W.12
When (E,E)-4 was treated with (RCN)2MCl2 [(M = Pd, R =
Me) or (M = Pt, R = Ph)], chelate complexes 9Pd,Pt were
MHz, CDCl3) ꢁ ¼ 32:1 (p-CMe3), 33.6 (o-CMe3), 35.7
(p-CMe3), 38.9 (p-CMe3), 122.5 (m-Mesꢀ), 123.6, 125.7,
127.3, 127.5, 127.9, 132.3, 136.6 (pseudo t, JPC ¼ 18:1 Hz,
ipso-Mesꢀ), 149.6 (pseudo t, JPC ¼ 4:0 Hz, P=C–C), 151.2,
1
3
156.5, and 177.8 (dd, JPC ¼ 16:5 Hz and JPC ¼ 7:0 Hz,
P=C); 31P{1H} NMR (162 MHz, CDCl3) ꢁ ¼ 173:8; IR (KBr)
2960, 2908, 2870, 1593, 1473, 1396, 1362, 1238, 1209, and
758 cmꢂ1; UV–vis (hexane) 278 (log " 4.40), 290 (sh, 4.35),
and 338 nm (4.55). Found: m=z 753.4711. Calcd. for C52H67P2,
MHþ, 753.4713.
1
formed.12 Although the JWP of 9W is similar to that of (E,E)-
1
1b W(CO)4 complex ( JWP ¼ 257 Hz), the 1JPtP of 9Pt is appa-
.
rently smaller than that of (E,E)-1b PtCl2 complex (1JPtP
4499:2 Hz). The reason for this small JPtP value in 9Pt is not
clear at this time. The structure-JPtP relationship is still unclear
¼
.
1
10 C52H66P2, Mr ¼ 753:04. monoclinic, space group C2 (#5), a ¼
ꢁ
ꢀ
14:948ð5Þ, b ¼ 10:385ð3Þ, c ¼ 15:264ð6Þ A, ꢃ ¼ 106:963ð2Þ ,
V ¼ 2266:3ð14Þ A , Z ¼ 2, ꢄ ¼ 1:103 gcmꢂ3, ꢅ ¼ 1:29 cmꢂ1
;
ꢀ 3
.
in other known DPCB PtCl2 complexes.
R1 [I > 2ꢆðIÞ] = 0.034, R = 0.036 (all data), wR2 (all data) =
0.076. 5171 Unique reflections with 2ꢇ ꢃ 55:0ꢁ were recorded
(Mo Kꢂ radiation, graphite monochrometer) at ꢂ100 ꢁC. Crys-
tallographic data have been deposited at the Cambridge Crystal-
lographic Data Centre (No. CCDC 241967).
In summary, we have prepared diphosphinidenecyclo-
buta[l]phenanthrene derivative for the first time. A planar struc-
ture was confirmed by X-ray crystallography. Electronic pertur-
bation was shown by UV–vis and NMR spectroscopies. Further
studies on the properties of 4 and 9 are now in progress.
11 V. Petricek, I. Cisarova, L. Hummel, J. Kroupa, and B. Brezina,
Acta Crystallogr., Sect. B, 46, 830 (1990).
12 9Cr: Brown solid, mp 165–168 ꢁC (decomp.); 31P NMR (162
MHz, CDCl3) ꢁ ¼ 193:1; UV–vis (CH2Cl2) 247 (log " 4.85),
339 (4.46), and 456 nm (4.29). 9Mo: Brown solid, mp >
160 ꢁC (decomp.); 31P NMR ꢁ ¼ 176:3; UV–vis (CH2Cl2) 245
(log " 4.92), 334 (4.50), and 436 nm (4.42). 9W: Brown solid,
mp 222–226 ꢁC (decomp.); 31P NMR ꢁ ¼ 154:4 (satellite d,
1JWP ¼ 256:4 Hz); UV–vis (CH2Cl2) 244 (log " 4.95), 334
(4.52), 437 (4.52), and 530 nm (3.88). 9Pd: Brown solid, mp
This work was supported by Grant-in-Aid for Scientific Re-
search from the Ministry of Education, Culture, Sports, Science
and Technology (Nos. 13304049, 14044012, 15036206, and
16033207). We thank Dr. Chizuko Kabuto (Instrumental Analy-
sis Center for Chemistry, Tohoku Univ.) for crystallographic
analysis.
ꢁ
231–234 C (decomp.); 31P NMR ꢁ ¼ 149:5; UV–vis (CH2Cl2)
References and Notes
1
a) R. Appel, V. Winkhaus, and F. Knoch, Chem. Ber., 120,
243 (1987). b) M. Yoshifuji, K. Toyota, M. Murayama, H.
Yoshimura, A. Okamoto, K. Hirotsu, and S. Nagase, Chem.
Lett., 1990, 2195. c) K. Toyota, K. Tashiro, M. Yoshifuji, and
249 (log " 4.73) and 359 nm (4.63). 9Pt: Orange solid, mp >
1
300 ꢁC (decomp.); 31P NMR ꢁ ¼ 125:7 (satellite d, JPtP
¼
4441:4 Hz); UV–vis (CH2Cl2) 250 (log " 4.62), 261 (4.60), 274
(4.61), and 365 nm (4.67).
Published on the web (Advance View) November 13, 2004; DOI 10.1246/cl.2004.1570