L. W. A Van Berkom, R. de Gelder, H. W. Scheeren
FULL PAPER
5814–5819; j) M. Akssira, M. Boumzebra, H. Kasmi, A. Dah-
douh, Tetrahedron 1994, 50, 9051–9060.
amine 24 (104 mg, 252 µmol) was dissolved in toluene (3 mL) and
heated at reflux. The progress of the reaction was monitored using
TLC and NMR spectroscopy. After 5 days the reaction was finished
and the reaction mixture was evaporated to dryness. The crude pro-
duct was purified using column chromatography (CH2Cl2/MeOH,
20:1) to obtain the desired diazepane 23b (75.1 mg, 88%) as a light
yellow oil. An analytical sample was obtained by crystallisation from
EtOAc/heptane to give small sugar-like crystals. [α]2D0 = +52 (c = 0.08,
CH2Cl2). M.p. (EtOAc/heptane) 195 °C. 1H NMR (300 MHz,
CDCl3): δ = 1.65 (s, 3 H), 1.71 (s, 3 H), 1.64–1.96 (m, 4 H), 2.24–
2.38 (m, 2 H), 2.52–2.67 (m, 1 H), 2.95–3.07 (m, 1 H), 3.43–3.74 (m,
5 H), 4.33 (dd, J = 6.9 Hz, 6.9 Hz, 1 H), 5.36 (dd, J = 6.9 Hz, 6.9 Hz,
1 H), 7.10–7.33 (m, 5 H) ppm. 13C NMR (75 MHz, CDCl3): δ =
19.05, 19.07, 22.2, 28.4, 33.5, 42.8, 43.0, 44.2, 49.4, 51.6, 56.3, 122.9,
123.9, 126.6, 128.0, 128.2, 141.2, 170.4, 173.2 ppm. HRMS calcd. for
[4]
a) C. Taillefumier, S. Thielges, Y. Chapleur, Tetrahedron 2004, 60,
2213–2224; b) O. David, W. J. N. Meester, H. Bieräugel, H. E.
Schoemaker, H. Hiemstra, J. H. van Maarseveen, Angew. Chem.
Int. Ed. 2003, 42, 4373–4375; c) H. Bieräugel, H. E. Schoemaker,
H. Hiemstra, J. H. van Maarseveen, Org. Biomol. Chem. 2003, 1,
1830–1832; d) J. C. D. Müller-Hartwieg, K. G. Akyel, J. Zimmer-
mann, J. Pept. Sci. J. Peptide Sci. 2003, 9, 187–199; e) O. E.
Mahdi, J.-P. Lavergne, J. Martinez, P. Viallefont, E. M. Essassi,
C. Riche, Eur. J. Org. Chem. 2000, 251–255; f) C. Yuan, R. M.
Williams, J. Am. Chem. Soc. 1997, 119, 11777–11784; g) O. E.
Mahdi, J.-P. Lavergne, J. Martinez, P. Viallefont, C. Riche, Synth.
Commun. 1997, 27, 3539–3545; h) T. P. Curran, P. M. McEnaney,
Tetrahedron Lett. 1995, 36, 191–194. A number of reports de-
scribe the synthesis of 1,4-diazepane-2,5-diones using a lactamis-
ation of the terminal NH2 and the β-COOH of a dipeptide con-
taining aspartic acid i) A. Nefzi, C. Dooley, J. M. Ostresh, R. A.
Houghten, Bioorg. Med. Chem. Lett. 1998, 8, 2273–2278; j) A.
Nefzi, J. M. Ostresh, R. A. Houghten, Tetrahedron Lett. 1997,
38, 4943–4946; k) V. Krchnˇák, A. S. Weichsel, Tetrahedron Lett.
1997, 38, 7299–7302; For the preparation of 1,4-diazepane-2,5-
diones using Mitsunobu conditions for cyclisation, see: l) L. R.
Lampariello, D. Piras, M. Rodriguez, M. Taddei, J. Org. Chem.
2003, 68, 7893–7895.
[M]+ (C H N O ): 338.1994; found 388.1995. IR (film): ν = 2911,
˜
21 26
2
2
1687, 1599, 1402, 1153, 911, 733, 702, 647 cm–1. C21H26N2O2 (338.5):
calcd. C 74.53, H 7.74, N 8.28; found C 74.35, H 7.54, N 8.11.
Crystal Structure Determinations:[16] Crystals suitable for X-ray dif-
fraction studies were grown by slow evaporation from CH2Cl2/hep-
tane for 17 and 23a, and EtOAc/heptane for 23b. Single crystals were
mounted in air on glass fibres. Intensity data were collected at room
temperature for 23a and at Ϫ65 °C for 17 and 23b. A Nonius Kappa
CCD single-crystal diffractometer was used (φ and ω scan mode),
using graphite-monochromated Mo-Kα radiation. The structures
were solved by the program CRUNCH[25] and were refined with stan-
dard methods using SHELXL97[26] with anisotropic parameters for
[5]
a) W. Jiang, V. C. Alford, Y. Qiu, S. Bhattacharjee, T. M. John,
D. Haynes-Johnson, P. J. Kraft, S. G. Lundeen, Z. Sui, Bioorg.
Med. Chem. 2004, 12, 1505–1515;b) J. Giovannoni, G. Subra, M.
Amblard, J. Martinez, Tetrahedron Lett. 2001, 42, 5389–5392; c)
K. Akaji, K. Teruya, M. Akaji, S. Aimoto, Tetrahedron 2001, 57,
2293–2303.
the non-hydrogen atoms. For 23a all hydrogens were placed at calcu- [6]
lated positions and were refined riding on the parent atoms. For 17
and 23b the hydrogens were initially placed at calculated positions
and were freely refined subsequently. Crystallographic data and
parameters of the refinements are listed in Table 1.
a) L. W. A. van Berkom, G. J. T. Kuster, F. Kalmoua, R.
de Gelder, H. W. Scheeren, Tetrahedron Lett. 2003, 44, 5091–
5093;b) R. W. M. Aben, R. de Gelder, H. W. Scheeren, Eur. J.
Org. Chem. 2002, 3126–3132;c) G. J. T. Kuster, R. H. J. Steeghs,
H. W. Scheeren, Eur. J. Org. Chem. 2001, 553–560;d) G. J. Kuster,
H. W. Scheeren, Tetrahedron Lett. 2000, 41, 515–519;e) G. J. Kus-
ter, H. W. Scheeren, Tetrahedron Lett. 1998, 39, 3613–3616;f)
G. J. Kuster, F. Kalmoua, R. de Gelder, H. W. Scheeren, Chem.
Commun. 1999, 855–856;g) R. M. Uittenbogaard, J.-P. G.
Seerden, H. W. Scheeren, Tetrahedron 1997, 53, 11929–11936.
Currently this reaction is explored for other cycloaddition reac-
tions.
A. Avenoza, C. Cativiela, M. Paris, J. M. Peregrina, Tetrahedron:
Asymmetry 1995, 6, 1409–1418.
a) M. E. Jung, J. Gervay, J. Am. Chem. Soc. 1991, 113, 224–
232;b) P. von Ragué Schleyer, J. Am. Chem. Soc. 1961, 83, 1368–
1373.
a) L. A. LaPlanche, M. T. Rogers, J. Am. Chem. Soc. 1964, 86,
337–341;b) W. E. Stewart, T. H. Siddall, Chem. Rev. 1970, 70,
517–551.
L. A. LaPlanche, M. T. Rogers, J. Am. Chem. Soc. 1963, 85,
3728–3730.
a) P. J. Kocienski, Protecting Groups, 3rd ed.; Thieme, Stuttgart,
2004;b) T. W. Greene, P. G. M. Wuts, Protective Groups in Or-
ganic Synthesis, 3rd ed.; Wiley-Interscience: New York, 1999.
For the same reason, hydrolysis of the carboxylate ester bond
using various reaction conditions failed.
To prevent the formation of N-[(1-cyano-3,4-dimethyl-6-phenyl-
3-cyclohexenyl)carbonyl]-N,NЈ-diisopropylurea upon application
of 1,3-diisopropylcarbodiimide, the acid 11 was converted to
compound 14 using oxalyl chloride.
[1] D. A. Horton, G. T. Boune, M. L. Smythe, Chem. Rev. 2003, 103,
893–930.
[2] Anticonvulsant: a) N. S. Cho, K. Y. Song, C. Párkányi, J. Hetero-
[7]
cycl. Chem. 1989, 26, 1807–1810; b) G. D. Martino, S. Massa, F.
Corelli, G. Pantaleoni, D. Fanini, G. Palumbo, Eur. J. Med.
Chem. Chim. Ther. 1983, 18, 347; anxiolytic agent: c) W. B.
Wright, H. J. Brabander, E. N. Greenblatt, I. P. Day, R. A.
Hardy, J. Med. Chem.1978, 21, 1087–1089; antitumour: d) G. B.
Jones, C. L. Davey, T. C. Jenkins, A. Kamal, G. G. Kneale, S.
[8]
[9]
Neidle, G. D. Webster, D. E. Thurston, Anti-cancer Drug Des.
[10]
1990, 5, 249; opiate receptor antagonist: e) P. M. Carabateas,
L. S. Harris, J. Med. Chem. 1966, 9, 6–10; antithrombotic: f)
R. S. McDowell, B. K. Blackburn, T. R. Gadek, L. R. McGee,
T. Rawson, M. E. Reynolds, K. D. Robarge, T. C. Somers, E. D.
Thorsett, M. Tischler, R. R. Webb II, M. C. Venuti, J. Am.
Chem. Soc. 1994, 116, 5077–5083; g) R. R. Webb II, P. L. Barker,
M. Baier, M. E. Reynolds, K. D. Robarge, B. K. Blackburn,
M. H. Tischler, K. J. Weese, Tertrahedron Lett. 1994, 35, 2113–
2116; inhibitor of immunoglobulin E synthesis: h) P. Ettmayer,
S. Chloupek, K. Weigand, J. Comb. Chem. 2003, 5, 253–259.
[3] For example, see: a) M.-F. Cheng, J.-M. Fang, J. Comb. Chem.
2004, 6, 99–104; b) C. Migihashi, F. Sato, J. Heterocycl. Chem.
2003, 40, 143–147; c) T. I. Ho, W. S. Chen, C. W. Hsu, Y. M.
Tsai, J. M. Fang, Heterocycles 2002, 57, 1501–1506; d) W. M.
Kazmierski, J. D. McDermed, Synth. Commun. 2000, 30, 2629–
2634; e) C. Hulme, J. Peng, S. Y. Tang, C. J. Burns, I. Morize,
R. Labaudineire, J. Org. Chem. 1998, 63, 8021–8023; f) C. G.
Boojamra, K. M. Burow, L. A. Thompson, J. A. Ellman, J. Org.
Chem. 1997, 62, 1240–1256; g) J. P. Mayer, J. Zhang, K. Bjer-
garde, D. M. Lenz, J. J. Gaudino, Tetrahedron Lett. 1996, 37,
8081–8084; h) T. A. Keating, R. W. Armstrong, J. Org. Chem.
1996, 61, 8935–8939; i) G. M. Karp, J. Org. Chem. 1995, 60,
[11]
[12]
[13]
[14]
[15]
[16]
Upon standing in CDCl3 for 22 h the same reaction was ob-
served. The conversion of 16 to 17 probably involves molecular
oxygen. The details of the reaction mechanism are currently un-
der investigation.
Crystallographic data for the structures 17, 23a and 23b have
been deposited with the Cambridge Crystallography Data Centre
as supplementary publication numbers CCDC-252852, -252850
and -252851 contain the supplementary crystallographic data for
916
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2005, 907–917