Scheme 3. Dynamic Synthesis of a Catenane (11-H‚PF6) by
Two Distinct, Yet Complementary, Routesa
Figure 1. Partial 1H NMR spectra showing the change over time
during the magic ring synthesis of the dynamic [2]catenane
11-H‚PF6. Peak labels are defined in Scheme 3.
of 11-H‚PF6 is observed, by 1H NMR spectroscopy (Figure
1), to occur within a matter of minutes. After only 2 minutes,
1
signals are observed in the H NMR spectrum at δ ∼4.3
+
ppm, corresponding to the NH2 -adjacent methylene protons
(3) (a) Dietrich-Buchecker, C. O.; Sauvage, J.-P.; Kern, J.-M. J. Am.
Chem. Soc. 1984, 106, 3043-3045. (b) Hunter, C. A. J. Am. Chem. Soc.
1992, 114, 5303-5311. (c) Vo¨gtle, F.; Jager, R.; Handel, M.; Ottens-
Hildebrandt, S. Pure Appl. Chem. 1996, 68, 225-232. (d) Gong, C. G.;
Gibson, H. W. Angew. Chem., Int. Ed. 1998, 37, 310-314. (e) Kolchinski,
A. G.; Busch, D. H.; Alcock, N. W. J. Chem. Soc., Chem. Commun. 1995,
1289-1291. (f) Hansen, J. G.; Feeder, N.; Hamilton, D. G.; Gunter, M. J.;
Becher, J.; Sanders, J. K. M. Org. Lett. 2000, 2, 449-452. (g) Shukla, R.;
Deetz, M. J.; Smith, B. D. Chem. Commun. 2000, 2397-2398. (h) Hubbard,
A. L.; Davidson, G. J. E.; Patel, R. H.; Wisner, J. A.; Loeb, S. J. Chem.
Commun. 2004, 2, 138-139. (i) Sasabe, H.; Kihara, N.; Furusho, Y.;
Mizuno, K.; Ogawa, A.; Takata, T. Org. Lett. 2004, 6, 3957-3960. (j)
Hernandez, J. V.; Kay, E. R.; Leigh, D. A. Science 2004, 306, 1532-1537.
(4) (a) Rowan, S. J.; Brady, P. A.; Sanders, J. K. M. Angew. Chem., Int.
Ed. Engl. 1996, 35, 2143-2145. (b) Lehn, J.-M. Chem. Eur. J. 1999, 5,
2455-2463. (c) Lehn, J.-M.; Eliseev, A. V. Science 2001, 291, 2331-
2332. (d) Otto, S.; Furlan, R. L. E.; Sanders, J. K. M. Science 2002, 297,
590-593. (e) Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K.
M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2002, 41, 898-952. (f) Corbett,
P. T.; Otto, S.; Sanders, J. K. M. Org. Lett. 2004, 6, 1825-1827.
(5) (a) Cantrill, S. J.; Rowan, S. J.; Stoddart, J. F. Org. Lett. 1999, 1,
1363-1366. (b) Rowan, S. J.; Stoddart, J. F. Org. Lett. 1999, 1, 1913-
1916. (c) Glink, P. T.; Oliva, A. I.; Stoddart, J. F.; White, A. J. P.; Williams,
D. J. Angew. Chem., Int. Ed. 2001, 40, 1870-1875. (d) Horn, M.; Ihringer,
J.; Glink, P. T.; Stoddart, J. F. Chem. Eur. J. 2003, 9, 4046-4054. (e)
Chichak, K. S.; Cantrill, S. J.; Pease, A. R.; Chiu, S.-H.; Cave, G. W. V.;
Atwood, J. L.; Stoddart, J. F. Science 2004, 304, 1308-1312. (f) Hogg,
L.; Leigh, D. A.; Lusby, P. J.; Morelli, A.; Parsons, S.; Wong, J. K. Y.
Angew. Chem., Int. Ed. 2004, 43, 1218-1221. (g) Schalley, C. A. Angew.
Chem., Int. Ed. 2004, 43, 4399-4401. (h) Cantrill, S. J.; Chichak, K. S.;
Peters, A. J.; Stoddart, J. F. Acc. Chem. Res. 2005, 38, 1-9.
(6) (a) Kolchinski, A. G.; Alcock, N. W.; Roesner, R. A.; Busch, D. H.
Chem. Commun. 1998, 1437-1438. (b) Furusho, Y.; Oku, T.; Hasegawa,
T.; Tsuboi, A.; Kihara, N.; Takata, T. Chem. Eur. J. 2003, 9, 2895-2903.
(7) Fuchs, B.; Nelson, A.; Star, A.; Stoddart, J. F.; Vidal, S. B. Angew.
Chem., Int. Ed. 2003, 42, 4220-4224.
(8) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18-29.
(9) (a) Kidd, T. J.; Leigh, D. A.; Wilson, A. J. J. Am. Chem. Soc. 1999,
121, 1599-1600. (b) Weck, M.; Mohr, B.; Sauvage, J.-P. Grubbs, R. H. J.
Org. Chem. 1999, 64, 5463-5471. (c) Arico, F.; Mobian, P.; Kern, J.-M.;
Sauvage, J.-P. Org. Lett. 2003, 5, 1887-1890. (d) Iwamoto, H.; Itoh, K.;
Nagamiya, H.; Fukazawa, Y. Tetrahedron Lett. 2003, 44, 5773-5776. (e)
Wang, L. Y.; Vysotsky, M. O.; Bogdan, A.; Bolte, M. Bo¨hmer, V. Science
2004, 304, 1312-1314.
a Either ring-closing (left) or ring-opening-ring-closing (right)
metathesis protocols can be exploited.
as a mixture of (E)- and (Z)-isomers, as confirmed by ESI
mass spectrometry14 and both 1H and 13C NMR spectroscopy.
Hydrogenation (H2/PtO2/THF) of the olefinic double bond
in 11-H‚PF6 results in the formation of a single species,15
the [2]catenane 12-H‚PF6.
To demonstrate further the reversible nature of the olefin
metathesis reaction employed in the synthesis of the dynamic
[2]catenane 11-H‚PF6, the preformed macrocycle 2 was
employed in the corresponding magic ring synthesis. When
the two complementary macrocycles (9-H‚PF6 and 2) are
dissolved in CH2Cl2, catenation of these separate rings is,
in the absence of any other species, not possible. Upon the
addition of a catalytic amount of 1, however, the formation
Org. Lett., Vol. 7, No. 11, 2005
2131