As a result, the C-terminus, comprising the knotted DE-ring,
can form pores in the phospholipid membrane. This ulti-
mately leads to cell leakage and causes a collapse of the
vital ion gradients across the membrane.3,4
Scheme 1. Derivatization of (S)-2-Amino-4-hexynoic Acid 1
Recently, we communicated the preorganization-induced
synthesis of a crossed alkene-bridged mimic of the knotted
DE-ring system by ring-closing metathesis (RCM).5 We now
wish to report our results on obtaining the even more rigid
triple bond, containing alkyne mimics of the A-, B-, C-, and
(D)E-thioether rings of nisin Z, by ring-closing alkyne
metathesis (RCAM).6
In the macrocyclic series, ring-closing metathesis (RCM)
leads in most cases to a mixture of cis and trans double-
bond-containing alkene derivatives. However, after applica-
tion of ring-closing alkyne metathesis (RCAM),7 the triple
bond can be selectively reduced to either the cis isomer via
Lindlar’s catalyst8 or to the trans isomer by trans-selective
hydrosilylation followed by protodesilylation.9
The synthesis of the required (S)-2-amino-4-hexynoic acid
(2-butyne-glycine: “Bug”, 1)10 for incorporation in the
RCAM precursors was carried out according to the method
of Belokon,11,12 subjecting the Ni(II) complex of the Schiff
base derived from glycine and (S)-2-(N′-(N-benzylprolyl)-
amino)benzophenone to alkylation with 1-bromo-2-butyne
in the presence of base. After column chromatography
separation of the addition products (95% yield, diastereo-
metric ratio 96:4) and treatment with acid, (S)-2-amino-4-
hexynoic acid 1 was obtained as its hydrochloride salt in
80% yield with an enantiomeric excess of >98%. (deter-
mined by Chiral HPLC of 4). Acid 1 was converted to the
required derivatives for solution- and solid-phase peptide
synthesis (Scheme 1). Thus, methyl ester 2 (quantitative),
the N-R-Boc derivative 3 (95%), and the N-R-Fmoc deriva-
tive 4 (88%) were prepared. The latter compound was
coupled to plain ArgoGel resin using Sieber conditions13 to
give 5 (Scheme 1).
Linear RCAM-precursor peptide 6, corresponding to the
sequence of the A-ring in nisin, was synthesized in solution
starting from ester 2 in seven steps with an overall yield of
73%. RCAM of 6 (0.04 mM) was performed in the presence
of the tungsten-alkylidyne complex (tBuO)3WtCtBu as a
catalyst14 in toluene at 80 °C to give alkyne bridged cyclic
peptide 7 in a yield of 42% (Scheme 2).15
Scheme 2. Synthesis of Alkyne Mimic A (7)
(3) Hasper, H. E.; de Kruijff, B.; Breukink, E. Biochemistry 2004, 43,
11567.
(4) Hsu, S.-T.; Breukink, E.; Tischenko, E.; Lutters, M. A. G.; de Kruijff,
B.; Kaptein, R.; Bonvin, A. M. J. J.; van Nuland, N. A. J. Nat. Struct. Mol.
Biol. 2004, 11, 963.
(5) Ghalit, N.; Rijkers, D. T. S.; Kemmink, J.; Versluis, C.; Liskamp,
R. M. J. Chem. Commun. 2005, 192.
(6) RCAM on peptides, see: (a) Aguilera, B.; Wolf, L. B.; Nieczypor,
P.; Rutjes, F. P. J. T.; Overkleeft, H. S.; van Hest, J. C. M.; Schoemaker,
H. E.; Wang, B.; Mol, J. C.; Fu¨rstner, A.; Overhand, M.; van der Marel, G.
A.; van Boom, J. H. J. Org. Chem. 2001, 66, 3584. (b) IJsselstijn, M.;
Aguilera, B.; van der Marel, G. A.; van Boom, J. H.; van Delft, F. L.;
Schoemaker, H. E.; Overkleeft, H. S.; Rutjes, F. P. J. T.; Overhand, M.
Tetrahedron Lett. 2004, 45, 4379. (c) IJsselstijn, M.; Kaiser, J.; van Delft,
F. L.; Schoemaker, H. E.; Rutjes, F. P. J. T. Amino Acids 2003, 24, 263.
(7) See for example: (a) Fu¨rstner, A.; Seidel, G. Angew. Chem., Int.
Ed. 1998, 37, 1734. (b) Fu¨rstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012.
(c) Fu¨rstner, A.; Davies, P. Chem. Commun. 2005, 2307.
(8) Campos, K. R.; Cai, D.; Journet, M.; Kowal, J. J.; Larsen, R. D.;
Reider, P. J. J. Org. Chem. 2001, 66, 3634.
(9) (a) Fu¨rstner, A.; Radkowski, K. Chem. Commun. 2002, 2182. (b)
Lacombe, F.; Radkowski, K.; Seidel, G.; Fu¨rstner, A. Tetrahedron 2004,
60, 7315.
(10) For other methods for the synthesis of this amino acid, see: (a)
Wolf, L. B.; Sonke, T.; Tjen, K. C. M. F.; Kaptein, B.; Broxterman, Q. B.;
Schoemaker, H. E.; Rutjes, F. P. J. T. AdV. Synth. Catal. 2001, 343, 662.
(b) Ref 6c.
When this reaction was carried out at a higher concentra-
tion, lower yields were obtained and oligomerization was a
dominant side reaction. The synthesis of 7 is the first example
(11) Belokon, Y. N. Janssen Chim. Acta 1992, 10, 4.
(12) Collet, S.; Bauchat, P.; Danion-Bougot, R.; Danion, D. Tetra-
hedron: Asymmetry 1998, 9, 2121.
(14) (a) Akiyama, M.; Chisholm, M. H.; Cotton, F. A.; Extine, M. W.;
Haitko, D. A.; Little, D.; Fanwick, P. E. Inorg. Chem. 1979, 18, 2266. (b)
Listermann, M. L.; Schrock, R. R. Organometallics 1985, 4, 74.
(13) Sieber, P. Tetrahedron Lett. 1987, 28, 6147.
2962
Org. Lett., Vol. 7, No. 14, 2005