Published on Web 07/07/2005
Photoinduced Charge Transfer Processes along Triarylamine
Redox Cascades
Christoph Lambert,*,† Ju¨rgen Schelter,† Torsten Fiebig,*,‡ Daniela Mank,‡ and
Anton Trifonov‡
Contribution from the Institut fu¨r Organische Chemie, Bayerische Julius-Maximilians-UniVersita¨t
Wu¨rzburg, Am Hubland, D-97074 Wu¨rzburg, Germany, and Boston College, Department of
Chemistry, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467
Received February 23, 2005; E-mail: lambert@chemie.uni-wuerzburg.de; Fiebig@bc.edu
Abstract: In this paper, we describe the synthesis and photophysical properties of a series of acridine-
triarylamine redox cascades. These cascades were designed in order to promote photoinduced hole transfer
from an acridine fluorophore into an adjacent triarylamine. The excited dipolar state then injects a hole into
the triarylamine redox cascade. Subsequently, the hole migrates along the redox gradient which was tuned
by the substituents attached to the triarylamine redox centers. The rate of hole migration was determined
by fluorescence lifetime measurements and is in the ns regime and depends strongly on the solvent polarity.
The photophysical processes were also investigated by femtosecond broadband pump-probe spectroscopy.
Our studies reveal different dynamic processes in the cascades depending on the solvent polarity, e.g.,
direct charge separation after photoexcitation vs a two step hole transfer mechanism.
Introduction
groups have been investigated but also cascades with many
triarylamines in a row27-29 up to polymers11,30 and den-
Electron transfer (ET) or, more precisely, hole transfer (HT)
processes in triarylamine based systems have thoroughly been
investigated in the past.1-4 Owing to the relatively simple
synthetic accessibility and the stability of oxidized triarylamines
these units are widely used as hole transport components in
optoelectronic devices.5-10 But also on a molecular level,
triarylamines have attracted considerable interest: the triaryl-
amine group was used as the charge bearing unit in organic
mixed valence compounds for intramolecular ET studies1-4,11-15
as well as in organic high spin systems for organic ferro-
magnets.16-26 One-dimensional systems with two triarylamine
drimers.31-36 In the present study, we will focus on triarylamine
cascades in which a hole can be transferred along a redox
gradient. The redox centers of these cascades are built up from
triarylamines connected by acetylene spacers. The hole is
injected in the cascade by photoinduced electron transfer (PET)
of an excited acridine chromophore. Triarylamines were used
as redox centers for the above-mentioned reasons but also
(16) Blackstock, S. C.; Selby, T. D. In Magnetic Properties of Organic Materials;
Lahti, P. M., Ed.; Marcel Dekker: New York, 1999; pp 165-178.
(17) Stickley, K. R.; Blackstock, S. C. Tetrahedron Lett. 1995, 36, 1585-1588.
(18) Stickley, K. R.; Blackstock, S. C. J. Am. Chem. Soc. 1994, 116, 11576-
11577.
(19) Selby, T. D.; Blackstock, S. C. Org. Lett. 1999, 1, 2053-2055.
(20) Wienk, M. M.; Janssen, R. A. J. Am. Chem. Soc. 1997, 119, 4492-4501.
(21) Bushby, R.-J. In Magnetism: Molecules to Materials II; Miller, J. S.,
Drillon, M., Eds.; Wiley-VCH: Weinheim, Germany, 2001; pp 149-187.
(22) Selby, T. D.; Blackstock, S. C. J. Am. Chem. Soc. 1999, 121, 7152-7153.
(23) Selby, T. D.; Stickley, K. R.; Blackstock, S. C. Optics Lett. 2000, 2, 171-
174.
(24) Ito, A.; Urabe, M.; Tanaka, K. Angew. Chem. 2003, 115, 951-954.
(25) Hauck, S. I.; Lakshmi, K. V.; Hartwig, J. F. Org. Lett. 1999, 1, 2057-
2060.
† Bayerische Julius-Maximilians-Universita¨t Wu¨rzburg.
‡ Boston College.
(1) Lambert, C.; No¨ll, G.; Schelter, J. Nat. Mater. 2002, 1, 69-73.
(2) Lambert, C.; No¨ll, G. Chem. Eur. J. 2002, 8, 3467-3477.
(3) Lambert, C.; No¨ll, G. J. Am. Chem. Soc. 1999, 121, 8434-8442.
(4) Lambert, C.; Amthor, S.; Schelter, J. J. Phys. Chem. A 2004, 108, 6474-
6486.
(5) Zhao, H. T. C.; Thayumanavan, S. Tetrahedron Lett. 2001, 42, 4421-
4424.
(6) Fujikawa, H.; Tokito, S.; Taga, Y. Synth. Met. 1999, 91, 161-162.
(7) Thayumanavan, S.; Barlow, S.; Marder, S. R. Chem. Mater. 1997, 9, 3231-
3235.
(26) Michinobu, T.; Takahashi, M.; Tsuchida, E.; Nishide, H. Chem. Mater.
1999, 11, 1969-1971.
(27) Selby, T. D.; Kim, K.-Y.; Blackstock, S. C. Chem. Mater. 2002, 14, 1685-
(8) Koene, B. E.; Loy, D. E.; Thompson, M. E. Chem. Mater. 1998, 10, 2235-
1690.
2250.
(28) Kim, K.-Y.; Hassenzahl, J. D.; Selby, T. D.; Szulczewski, G. J.; Blackstock,
S. C. Chem. Mater. 2002, 14, 1691-1694.
(9) Weiss, D. S.; Cowdery, J. R.; Young, R. H. In Electron Transfer in
Chemistry; Balzani, V., Ed.; Wiley-VCH: Weinheim, 2001; Vol. 5; pp
379-471.
(29) Plater, M. J.; Jackson, T. Tetrahedron 2003, 59, 4687-4692.
(30) Ohsawa, Y.; Ishikawa, M.; Miyamoto, T.; Murofushi, Y.; Kawai, M. Synth.
Met. 1987, 18, 371-374.
(10) Thelakkat, M. Macromol. Mater. Eng. 2002, 287, 442-461.
(11) Lambert, C.; No¨ll, G. Synth. Met. 2003, 139, 57-62.
(12) Lambert, C.; No¨ll, G.; Hampel, F. J. Phys. Chem. A 2001, 105, 7751-
7758.
(31) Louie, J.; Hartwig, J. F.; Fry, A. J. J. Am. Chem. Soc. 1997, 119, 11695-
11696.
(32) Katsuma, K.; Shirota, Y. AdV. Mater. 1998, 10, 223-226.
(33) Wu, I.-Y.; Lin, J. T.; Tao, Y.-T.; Balasubramaniam, E. AdV. Mater. 2000,
12, 668-669.
(13) Lambert, C.; No¨ll, G.; Kriegisch, V.; Zabel, M.; Hampel, F.; Schma¨lzlin,
E.; Bra¨uchle, C.; Meerholz, K. Chem. Eur. J. 2003, 9, 4232-4239.
(14) Bonvoisin, J.; Launay, J.-P.; Verbouwe, W.; Van der Auweraer, M.; De
Schryver, F. C. J. Phys. Chem. 1996, 100, 17079-17082.
(15) Bonvoisin, J.; Launay, J.-P.; Van der Auweraer, M.; De Schryver, F. C. J.
Phys. Chem. 1994, 98, 5052-5057, see also correction 1996, 100, 18006.
(34) Chen, C. H.; Shi, J.; Tang, C. W. Macromol. Symp. 1997, 125, 1-48.
(35) Selby, T. D.; Blackstock, S. C. J. Am. Chem. Soc. 1998, 120, 12155-
12156.
(36) Krys, B.; S, T. J. Org. Chem. 2003, 68, 5559-67.
9
10600
J. AM. CHEM. SOC. 2005, 127, 10600-10610
10.1021/ja0511570 CCC: $30.25 © 2005 American Chemical Society