ORGANIC
LETTERS
2005
Vol. 7, No. 16
3569-3572
A Scalable Route to Trisubstituted
(E)-Vinyl Bromides
Cheon-Gyu Cho,*,† Won-Suk Kim, and Amos B. Smith, III*
Department of Chemistry, Hanyang UniVersity, Seoul, Korea 133-791, and Department
of Chemistry, UniVersity of PennsylVania, Philadephia, PennsylVania 19104
ccho@hanyang.ac.kr; absmith@sas.upenn.edu
Received June 13, 2005
ABSTRACT
An effective, readily scalable two-step synthesis of trisubstituted (E)-vinyl bromides involving bromination of
r,â-unsaturated lactones followed
by hydrolytic fragmentation has been developed. Several trisubstituted (E)-vinyl bromides, including multigram quantities of (
+
)-(E)-4-bromo-
2-methyl-3-pentenol, a synthetic intermediate required for the C(8)−C(11) moieties of (+)-tedanolide (1) and (+)-13-deoxytedanolide (2), illustrate
the utility of this protocol.
Trisubstituted (E)-halo alkenes comprise important synthetic
intermediates often employed in natural product total syn-
theses, in particular for macrolides such as scyphostatin,1
octalactin,2 phomactin,3 borrelidin,4 apoptolidin,5 FK901464,6
phorboxazole A,7 fostriecin,8 taxifolial A,9 and kendomycin,10
tedanolide (1), and deoxytedanolide (2).11
In connection with our continuing interest in defining the
biochemical mode of action of architectually complex
macrolides, we recently initiated preparative-scale syntheses
of both (+)-tedanolide (1) and (+)-13-deoxytedanolide (2),
based on our now successful first-generation synthesis of
13-deoxytedanolide (2). For this venture we required mul-
tigram quantities of (E)-vinyl iodide 3 to serve as the C(8)-
C(11) fragment (Scheme 1). Although our first generation
† Sebbatical Leave from the Department of Chemistry, Hanyang Uni-
versity, Seoul, Korea 133-791.
(1) Inoue, M.; Yokota, W.; Murugeshi, M. G.; Izuhara, T.; Katoh, T.
Angew. Chem., Int. Ed. 2004, 43, 4207.
(2) O’Sullivan, P. T.; Buhr, W.; Fuhry, M. A. M.; Harrison, J. R.; Davies,
J. E.; Feeder, N.; Marshall, D. R.; Burton, J. W.; Holmes, A. B. J. Am.
Chem. Soc. 2004, 126, 2194.
Scheme 1
(3) Mohr, P. T.; Halcomb, R. L. J. Am. Chem. Soc. 2003, 125, 1712.
(4) Duffey, M. O.; LeTiran, A.; Morken, J. P. J. Am. Chem. Soc. 2003,
125, 1458.
(5) Nicholaou, K. C.; Li, Y.; Sugita, K.; Monenschein, H.; Guntupali,
P.; Mitchell, H. J.; Fylaktakidou, K. C.; Vourloumis, D.; Giannakakou, P.;
O’Brate, A. J. Am. Chem. Soc. 2003, 125, 15443.
(6) Thompson, C. F.; Jamison, T. F.; Jacobsen, E. N. J. Am. Chem. Soc.
2001, 123, 9974.
(7) Smith, A. B., III; Verhoest, P. R.; Minbiole, K. P.; Schelhaas, M.; J.
Am. Chem. Soc. 2001, 123, 4834.
(8) Esumi, T.; Okamoto, N.; Hatakeyama, S. Chem. Commun. 2002,
3042.
(9) Commeiras, L.; Santelli, M.; Parrain, J.-L. Org. Lett. 2001, 3, 1713.
(10) Yuan, Y.; Men, H.; Lee, C. J. Am. Chem. Soc. 2004, 126,
14720.
(11) (a) Smith, A. B., III; Adams, C. M.; Lodise-Barbosa, S. A.; Degnan,
A. P. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12042. (b) Smith, A. B., III;
Adams, C. M.; Lodise-Barbosa, S. A.; Degnan, A. P. J. Am. Chem. Soc.
2003, 125, 350. (c) Smith, A. B., III; Lodise-Barbosa, S. A. Org. Lett. 1999,
1, 1249.
route to (-)-5, employing the Pd-catalyzed hydrostannylation
of alkyne (-)-4 followed by iodination, proved effective, a
somewhat difficult to separate mixture (ca. 6:1) of the E-
and Z-isomers resulted (eq 1, Scheme 2).
We reasoned that hydrozirconation might be more effective
given the anticipated efficiency and higher E-selectivity after
the iodination (eq 2).1-6 This reaction sequence, however,
10.1021/ol051376q CCC: $30.25
© 2005 American Chemical Society
Published on Web 07/15/2005