B. Lastdrager et al. / Tetrahedron Letters 46 (2005) 6195–6198
6197
2. Tachibana, K.; Scheuer, P. J.; Tsukitani, Y.; Kikuchi, H.;
Van Engen, D.; Clardy, J.; Gopichand, Y.; Schmitz, F. J.
J. Am. Chem. Soc. 1981, 103, 2469–2471.
3. (a) Bialojan, C.; Takai, A. Biochem. J. 1988, 256, 283–290;
(b) Cohen, P.; Holmes, C. F. B.; Tsukitani, Y. Trends
Biochem. Sci. 1990, 15, 98–102.
4. Yasumoto, T.; Murata, M.; Oshima, Y.; Sano, M.; Mat-
sumoto, G. K.; Clardy, J. Tetrahedron 1985, 41, 1019–1025.
5. Isobe, M.; Ichikawa, Y.; Goto, T. Tetrahedron Lett. 1986,
27, 963–966.
HNZ
HNZ
i
HO
OMe
HO
OMe
O
O
O
17
18
ii
NZ
R
ZN
NZ
iii
O
O
O
OMe
6. Francke, W.; Heemann, V.; Gerken, B.; Renwick, J. A. A.;
O
O
´
Vite, J. P. Naturwissenschaften 1977, 64, 590–591.
19
20 R = CO2Me
21 R = H
7. Francke, W.; Kitching, W. Curr. Org. Chem. 2001, 5, 233–
251.
iv
8. (a) Gourcy, J.-G.; Dauphin, G.; Jeminet, G. Tetrahedron:
Asymmetry 1991, 2, 31–34; (b) Sauret, S.; Cuer, A.;
Gourcy, J.-G.; Jeminet, G. Tetrahedron: Asymmetry 1995,
6, 1995–2000; (c) Crimmins, M. T.; Rafferty, S. W.
Tetrahedron Lett. 1996, 37, 5649–5652; (d) Fan, X.;
Flentke, G. R.; Rich, D. H. J. Am. Chem. Soc. 1998,
120, 8893–8894; (e) Hayes, P.; Suthers, B. D.; Kitching,
W. Tetrahedron Lett. 2000, 41, 6175–6179; (f) Sharma, A.;
Iyer, P.; Gamre, S.; Chattopadhyay, S. Synthesis 2004,
1037–1040; (g) Tursun, A.; Canet, I.; Aboab, B.; Sinibaldi,
M.-E. Tetrahedron Lett. 2005, 46, 2291–2294.
9. (a) Uckun, F. M.; Mao, C.; Vassilev, A. O.; Huang, H.;
Jan, S.-T. Bioorg. Med. Chem. Lett. 2000, 10, 541–545; (b)
Huang, H.; Mao, C.; Jan, S.-T.; Uckun, F. M. Tetra-
hedron Lett. 2000, 41, 1699–1702; (c) Smith, A. B., III;
Corbett, R. M.; Pettit, G. R.; Chapuis, J.-C.; Schmidt, J.
M.; Hamel, E.; Jung, M. K. Bioorg. Med. Chem. Lett.
2002, 12, 2039–2042.
10. Van Hooft, P. A. V.; El Oualid, F.; Overkleeft, H. S.; van
der Marel, G. A.; van Boom, J. H.; Leeuwenburgh, M. A.
Org. Biomol. Chem. 2004, 1395–1403.
11. Bextermo¨ller, R.; Redlich, H.; Schnieders, K.; Thorma¨h-
len, S.; Fro¨hlich, R. Angew. Chem., Int. Ed. 1998, 37,
2496–2500.
12. Enders, D.; Dahmen, W.; Dederichs, E.; Gatzweiler, W.;
Weuster, P. Synthesis 1990, 1013–1019.
13. Bez, G.; Bezbarua, M. S.; Saikia, A. K.; Barua, N. C.
Synthesis 2000, 537–540.
v
O O
ZHN
NHZ
22
Scheme 3. Reagents and conditions: (i) (a) NMM, ClCO2Et, THF,
ꢀ10 ꢁC, 10 min; (b) NaBH4 (3.0 equiv), 0 ꢁC, 30 min, 83% (2 steps); (ii)
dimethoxypropane, acetone, p-TsOH, rt, 17 h, 94%; (iii) LHMDS
(1.0 M in hexanes, 2.5equiv), TMEDA (5.0 equiv), THF, 0 ꢁC, 3 h
72%; (iv) KOH (2.5equiv), MeOH/H 2O (1:1), reflux, 1 h, 79%; (v)
HOAc/H2O (1:1), reflux, 3 h, 90%.
which was subsequently reduced with sodium borohy-
dride furnishing alcohol 18 in 83% yield. Installation
of the isopropylidene group gave oxazolidine 19 (94%),
of which Claisen self-condensation under the conditions
previously described afforded b-ketoester 20 in a yield of
72%. Saponification of 20 at elevated temperature gave
the corresponding b-ketoacid which immediately under-
went decarboxylation yielding ketone 21 in 79%. Acidic
removal of the isopropylidene protecting groups and
concomitant cyclisation provided amine protected spiro-
ketal 22 in a yield of 90%.22
14. Barun, O.; Sommer, S.; Waldmann, H. Angew. Chem., Int.
Ed. 2004, 43, 3195–3199.
15. El Sous, M.; Rizzacasa, M. A. Tetrahedron Lett. 2000, 41,
8591–8594.
16. To the best of our knowledge only a few examples are
described in the literature: (a) Baker, R.; Herbert, R.;
Howse, P. E.; Jones, O. T. J. Chem. Soc., Chem. Commun.
1980, 52–53; (b) Bo¨hrer, G.; Knorr, R.; Bo¨hrer, P. Chem.
Ber. 1990, 123, 2161–2166; (c) Austad, B. C.; Hart, A. C.;
Burke, S. D. Tetrahedron 2002, 58, 2011–2026.
In conclusion, we have presented a new route for the
stereoselective synthesis of functionalised 1,7-dioxa-
spiro[5.5]undecane ring systems. These C2-symmetrical
spiroketals were efficiently obtained via acid-catalysed
cyclisation of dihydroxyketones which are readily avail-
able from the Claisen self-condensation of suitably
substituted hydroxy esters. The scope of our strategy
in the preparation of unsymmetrical spiroketals and
their implementation as chiral scaffolds is currently
under investigation.
´
17. Hanessian, S.; Ugolini, A.; Dube, D.; Glamyan, A. Can. J.
Chem. 1984, 62, 2146–2147.
18. Krapcho, A. P.; Weimaster, J. F.; Eldridge, J. M.;
Jahngen, E. G. E., Jr.; Lovey, A. J.; Stephens, W. P. J.
Org. Chem. 1978, 43, 138–147.
Acknowledgement
19. All analytical data of compound 4a are in full agreement
with those reported in the literature (see Refs. 8b,f).
This work was financially supported by the Council for
Chemical Sciences of the Netherlands Organisation for
Scientific Research (NWO-CW).
20
½aꢁD +59.0 (c 0.8, CHCl3). 1H NMR (300 MHz, CDCl3): d
3.75(m, 2H, H-2, H-7), 3.60 (dd, 2H, J = 3.4 Hz,
J = 11.4 Hz, 2 · CHCH2OH), 3.51 (dd, 2H, J = 6.9 Hz,
J = 11.4 Hz, 2 · CHCH2OH), 2.54 (s, 2H, 2 · OH), 1.99–
1.82 (qt, 2H, J = 4.2 Hz, J = 13.2 Hz, H-4a, H-10a), 1.67–
1.58 (m, 4H, H-4b, H-5a, H-10b, H-11a), 1.51 (m, 2H, H-
3a, H-9a), 1.41 (m, 2H, H-5b, H-11b), 1.28 (dq, 2H,
J = 3.8 Hz, J = 12.8 Hz, H-3b, H-9b). 13C NMR
(75MHz, CDCl 3): d 96.0 (C-6), 72.0 (C-2, C-8), 66.1
(2 · CH2OH), 35.1 (C-5, C-11), 26.4 (C-3, C-9), 18.2 (C-4,
References and notes
1. (a) Perron, F.; Albizati, K. F. Chem. Rev. 1989, 89, 1617–
1661; (b) Fletcher, M. T.; Kitching, W. Chem. Rev. 1995,
95, 789–828; (c) Mead, K. T.; Brewer, B. N. Curr. Org.
Chem. 2003, 7, 227–256.