4036
C. W. Zapf et al. / Bioorg. Med. Chem. Lett. 15 (2005) 4033–4036
As before, the aminoalkyl side chain was installed via an
amide bond utilizing protected aminohexanoic acid 11.
The amide-bond formation was carried out with PyBroP
as the coupling reagent thus providing the fully protect-
ed target structure in 80% yield. The final molecule 21
was obtained in quantitative yield by treating this amide
with 4 N HCl in dioxane.
nonpeptidic analogs of other biologically relevant
structures.
References and notes
1. Falb, E.; Salitra, Y.; Yechezkel, T.; Bracha, M.; Litman,
P.; Olender, R.; Rosenfeld, R.; Senderowitz, H.; Jiang, S.;
Goodman, M. Bioorg. Med. Chem. 2001, 9, 3255.
2. Mattern, R. H.; Moore, S. B.; Tran, T. A.; Rueter, J. K.;
Goodman, M. Tetrahedron 2000, 56, 9819.
Figure 2 summarizes the five target structures synthe-
sized. On the basis of their elements of diversity, we
hope to be able to answer relevant questions with regard
to the utility of our designed scaffold. The main issues
which can be addressed with this series of somatostatin
analogs revolve around regiochemistry, stereochemistry,
steric constraints, and charge.
3. Mattern, R.-H.; Tran, T.-A.; Goodman, M. J. Med.
Chem. 1998, 41, 2686.
4. Tran, T.-A.; Mattern, R.-H.; Afargan, M.; Amitay, O.;
Ziv, O.; Morgan, B. A.; Taylor, J. E.; Hoyer, D.;
Goodman, M. J. Med. Chem. 1998, 41, 2679.
5. Melacini, G.; Zhu, Q.; Osapay, G.; Goodman, M. J. Med.
Chem. 1997, 40, 2252.
Valuable information about the stereochemical require-
ments for the tryptophan moiety will be obtained by
comparing somatostatin analog 12 with epi-12. Com-
pound 14 contains a tertiary amine which will be pro-
tonated under physiological conditions. This structural
feature will enable us to draw conclusions about the ef-
fects of a positive charge in the somatostatin ligand.
Analog 17, with the additional pivaloyl amide feature,
follows the established trend of incorporating steric hin-
drance to the ligand therefore reducing the overall flex-
ibility of the compound and thus increasing its binding
affinity. Bicyclic structure 21 with the substituted prolin-
ol building block represents a member of a potentially
large family of somatostatin analogs based on the 1,4-
diaza-2-keto-bicyclo[4.3.0]-nonane scaffold.
6. Janecka, A.; Zubrzycka, M.; Janecki, T. J. Pept. Res.
2001, 58, 91.
7. Rohrer, S. P.; Birzin, E. T.; Mosley, R. T.; Berk, S. C.;
Hutchins, S. M.; Shen, D.-M.; Xiong, Y.; Hayes, E. C.;
Parmar, R. M.; Foor, F.; Mitra, S. W.; Degrado, S. J.;
Shu, M.; Klopp, J. M.; Cai, S.-J.; Blake, A.; Chan, W. W.
S.; Pasternak, A.; Yang, L.; Patchett, A. A.; Smith, R. G.;
Chapman, K. T.; Schaeffer, J. M. Science 1998, 282,
737.
8. Yang, L.; Guo, L.; Pasternak, A.; Mosley, R. T.; Rohrer,
S. P.; Birzin, E. T.; Foor, F.; Cheng, K.; Schaeffer, J. M.;
Patchett, A. A. J. Med. Chem. 1998, 41, 2175.
9. Yang, L.; Berk, S. C.; Rohrer, S. P.; Mosley, R. T.; Guo,
L.; Underwood, D. J.; Arison, B. H.; Birzin, E. T.; Hayes,
E. C.; Mitra, S. W.; Parmar, R. M.; Cheng, K.; Wu, T.-J.;
Butler, B. S.; Foor, F.; Pasternak, A.; Pan, Y.; Silva, M.;
Freidinger, R. M.; Smith, R. G.; Chapman, K. T.;
Schaeffer, J. M.; Patchett, A. A. Proc. Natl. Acad. Sci.
U.S.A. 1998, 95, 10836.
10. Vale, W.; Brazeau, P.; Rivier, C.; Brown, M.; Boss, B.;
Rivier, J.; Burgus, R.; Ling, N.; Guillemin, R. Recent
Progr. Horm. Res. 1975, 31, 365.
11. Nutt, R. F.; Veber, D. F.; Curley, P.; Saperstein, R.;
Hirschmann, R. Int. J. Pept. Protein Res. 1983, 21, 66.
12. Creighton, C. J.; Zapf, C. W.; Bu, J. H.; Goodman, M.
Org. Lett. 1999, 1407.
The design and successful synthesis of these two novel
scaffolds are not limited to the area of somatostatin.
As was shown previously, we have full control over
the stereochemical properties of these scaffolds as well
as the substituents which serve as pharmacophores.
We believe that the facile and efficient syntheses of these
scaffolds will lend themselves to the design of related
13. Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett.
1995, 36, 6373.
14. Swayze, E. E. Tetrahedron Lett. 1997, 38, 8643.
15. Kung, P. P.; Swayze, E. Tetrahedron Lett. 1999, 40, 5651.
16. Arya, P.; Wei, C. Q.; Barnes, M. L.; Daroszewska, M.
J. Comb. Chem. 2004, 6, 65.
17. Aggarwal, V. K.; Humphries, P. S.; Fenwick, A. J. Chem.
Soc., Perkin Trans. 1999, 1, 2883.
18. Yamaguchi, R.; Hamasaki, T.; Sasaki, T.; Ohta, T.;
Utimoto, K.; Kozima, S.; Takaya, H. J. Org. Chem. 1993,
58, 1136.
19. Nakamura, K.; Baker, T. J.; Goodman, M. Org. Lett.
2000, 2, 2967.
20. Bromide 13 was prepared from acid 11 via reduction of
acid 11 using borane methyl sulfide complex (78%)
followed by bromination utilizing triphenylphosphine,
bromine, and imidazole (78%).
21. Del Valle, J. R.; Goodman, M. J. Org. Chem. 2003, 68,
3923.
Figure 2. Series of compounds prepared by means of the intramolec-
ular Fukuyama–Mitsunobu reaction.
22. Del Valle, J. R.; Goodman, M. Angew. Chem. Int. Ed.
Engl. 2002, 41, 1600.