E. Csuzdi et al. / Bioorg. Med. Chem. Lett. 15 (2005) 4662–4665
4665
´
Patthy, M.; Horvath, G. Bioorg. Med. Chem. 2000, 8, 2127.
9. Elger, B.; Huth, A.; Neuhaus, R.; Ottow, E.; Schneider,
H.; Seilheimer, B.; Turski, L. J. Med. Chem. 2005, 48,
4618.
´
´
Andrasi, F.; Kapus, G.; Harsing, L. G. J.; Kiraly, I.;
´
CI-MS: 351 [MÀCO2+H]+ (100), 350 [MÀCO2]+ (74);
compound 12: mp: >260 ꢂC, 1H NMR (DMSO-d6,
T = 300K) d 7.63 (dd, J1 = 8.2 Hz, J2 = 2.3 Hz, 1H), 7.56
(d, J = 8.2 Hz, 1H), 7.37 (d, J = 8.4 Hz, 2H), 7.20 (d,
J = 2.3 Hz, 1H), 7.20 (s, 1H), 6.64 (d, J = 8.4 Hz, 2H),
5.81 (s, 2H, exchangeable), 4.81 (t, J = 5.5 Hz, 1H,
exchangeable), 4.28 (d, J = 5.5 Hz, 2H), 3.84 (br s, 2H);
compound 13: mp: >260 ꢂC, EI-MS: m/z: 380, 382 [M]+Å
(100,34), 337 (28), 218 (43).
´
10. Rezessy, B.; Solyom, S. Lett. Drug Des. Dis. 2004, 1, 217.
11. For preliminary results see: Migleczi, K.; Hazai, I.;
´
´
Jemnitz, K.; Patfalusi, M. J. Plan. Chrom. 2001, 14, 226.
12. Kukan, M. In Handbook of Drug Metabolism; Woolf, T.
F., Ed.; Marcel Dekker, Inc.: New York, 1999; pp 425–
442.
13. Eckstein, J. A.; Swanson, S. P. J. Chromatogr., B 1995,
668, 153.
15. Wistar male rat liver was cannulated into vena portae
and washed with HanksÕ balanced salt perfusion solution
saturated with O2/CO2 (95/5) for about 10 min. This
solution was spiked with 1 mg/ml of 2 in DMSO to give
a final concentration of 10 g/ml. Perfusion was carried
out at 37 ꢂC for 2 h. The flow rate was 40 ml/min.
Sample cleanup of perfusate solution was done using C18
solid-phase extraction cartridges, as described earlier.11
Methanol eluate was evaporated to dryness and was
reconstituted in a mixture of ethanol/0.05 M ammonium-
acetate, pH 8.5 buffer (1/1) and subjected to HPLC/MS
analysis. HPLC conditions: Purospher RP18 5 lm
250 · 4.0 mm column with 4 · 4.0 mm guard column,
flow rate: 1 ml/min, eluents: (A) acetonitrile/ammonium-
acetate buffer pH 8.5 (10/90), (B) acetonitrile/ammonium-
acetate buffer pH 8.5 (90/10). Gradient program: 0–
2 min: 10% B, 2–4 min: 10–20% B, 4–6 min: 20–30% B,
6–16 min: 30–40% B, 16–27 min: 40–80% B, 27–30 min:
80–10% B, and 30–35 min: 10% B. IT/MS conditions:
positive electrospray ionization, flow rate: 0.3 ml/min,
sheath gas: 20, spray voltage: 4.5 kV, capillary temper-
ature: 200 ꢂC, capillary voltage: 7. Selected ion monitor-
ing: 0–10 min: m/z 350–400, 10–12.3 min: m/z 380–390,
12.3–15.5 min: m/z 338–345, 15.5–17.6 min: m/z 380–390,
17.6–20.9 min: m/z 338–345, 20.9–23.4 min: m/z 364–369,
23.4–35 min: m/z 320–330. MS/MS experiment: normal-
ized collision energy: 50.
14. Physical and spectroscopic data of new compounds.
Compound 6: mp: 188–191 ꢂC, 1H NMR (DMSO-d6,
T = 25 ꢂC) d 8.32 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.5 Hz,
2H), 7.65 (dd, J1 = 8.3 Hz, J2 = 1.9 Hz, 1H), 7.60 (d,
J = 8.3 Hz, 1H), 7.15 (d, J = 1.9 Hz, 1H), 6.72 (s, 1H,
exchangeable), 4.25 (d, J = 10.8 Hz, 1H), 4.10 (q,
J = 7.2 Hz, 2H), 3.85 (s, 2H), 3.75 (d, J = 10.8 Hz, 1H),
1.13 (t, J = 7.2 Hz, 3H); 13C NMR d 170.7 (s), 166.9 (s),
154.3 (s), 147.8 (s), 143.1 (s), 136.1 (s), 133.4 (s), 131.6 (s),
131.3 (d), 130.6 (d), 129.8 (d), 128.4 (d), 123.6 (d), 93.6 (s),
62.7 (t), 61.0 (t), 33.0 (t) 13.9 (q); IR (KBr past.)
1754 cmÀ1
;
compound 7: mp: >260 ꢂC, 1H NMR
(DMSO-d6, T = 25 ꢂC) d 8.42 (d, J = 8.8 Hz, 2H), 8.23
(s, 1H), 7.96 (d, J = 8.8 Hz, 2H), 7.76 (dd, J1 = 8.4 Hz,
J2 = 2.0 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.22 (d,
J = 2.0 Hz, 1H), 4.25 (s, 2H), 4.23 (q, J = 6.9 Hz, 2H),
1.36 (t, J = 6.9 Hz, 3H); compound 8: mp: 151–153 ꢂC, 1H
NMR (DMSO-d6, T = 27 ꢂC) d 8.33 (d, J = 8.8 Hz, 2H),
7.83 (d, J = 8.8 Hz, 2H), 7.73 (dd, J1 = 8.4 Hz,
J2 = 2.0 Hz, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.23 (d,
J = 2.0 Hz, 1H), 5.10 (s, 2H), 4.22 (q, J = 7.2 Hz, 2H),
3.17 (br s, 2H), 1.23 (t, J = 7.2 Hz, 3H), 13C NMR d 187.9
(s), 167.9 (s), 159.4 (s), 158.2 (s), 148.3 (s), 142.7 (s), 135.5
(s), 132.3 (d), 131.7 (s), 130.6 (d), 130.1 (d), 128.0 (d), 123.6
(d), 62.0 (t), 57.1 (t), 40.3 (t), 13.7 (q); IR (KBr past.)
16. Sheardown, M. J. Brain Res. 1993, 607, 189, Compounds
were tested first at 20 lM in six retina preparations.
Compounds showing less than 40% inhibition were
designed as IC50 > 20 lM.
17. Swinyard, B. A. J. Pharmacol. Exp. Ther. 1952, 106, 319
(10 mice/dose and 3–4 doses were used; 60 min pretreat-
ment po).
1
1734 cmÀ1, 1668 cmÀ1; compound 9: mp: 250–253 ꢂC, H
NMR (DMSO-d6, T = 298 K) d 8.00 (s, 1H), 7.67 (dd,
J1 = 8.3 Hz, J2 = 1.8 Hz, 1H), 7.58 (d, J = 8.3 Hz, 1H),
7.40 (d, J = 8.5 Hz, 2H), 7.22 (d, J = 1.8 Hz, 1H), 6.63 (d,
J
= 8.5 Hz, 2H), 5.95 (s, 2H, exchangeable), 4.17 (q
J = 7.0 Hz, 2H), 4.05 (br s, 2H), 1.25 (t, J = 7.0 Hz, 3H);
compound 10: mp: >260 ꢂC, EI-MS: m/z:352, 354 [M]+Å
(44,17) 308, 310 (100,33), 268 (14), CI-MS: 353, 355
[M+H] (100,42); compound 11: mp: >260 ꢂC, EI-MS: m/z:
394, 396 [M]+Å (44,15), 350, 352, (100,48), 349, 351 (28,33),
18. Randall, L. O.; Schallek, W.; Heise, G. A.; Keth, E. F.;
Bagdon, R. E. J. Pharmacol. Exp. Ther. 1960, 129, 163 (10
mice/dose and 3–4 doses were used; 30 min pretreatment
ip).
19. Irwin, S. Psychopharmacologia 1968, 13, 222.