syn-pentane nonbonded interactions along the carbon back-
bone appears to play a major role in defining the observed
turn conformation.12,13 From the SAR perspective, our initial
results indicate that congeners of discodermolide lacking the
C(14) methyl substituent, as in the (+)-14-normethyl con-
gener (4), demonstrate a general trend of relative inactivity
against the NCI/ADR multidrug-resistant cell line,11b despite
retaining nanomolar cytotoxicity against a wide variety of
drug-sensitive cell lines.11b The underlying nature of these
results involving the subtle interplay between structure and
function in the C(13)-C(14) region of discodermolide
continues to be the subject of active investigation in our
laboratory. In this paper, we disclose the design, total
synthesis, and biological evaluation of two cyclopropyl
congeners of discodermolide: (+)-13S,14S-cyclopropyldis-
codermolide (1) and (+)-13R,14R-cyclopropyldiscodermolide
(2).
Figure 1.
congener (4).
(+)-Discodermolide (3) and the (+)-14-normethyl
cal efforts resulting in seven total syntheses.2,8 Additional
endeavors have focused on the design and synthesis of
structurally simplified analogues of this potentially important
chemotherapeutic agent.9
Initial efforts focused on the direct cyclopropanation of
the known advanced olefin (+)-511a to install the cyclopro-
pane functionality at C(13)-C(14) as required for an
advanced recursor such as 8 (Scheme 1).
In parallel with our efforts to develop an ever more
practical total synthesis of discodermolide to provide material
for clinical development,10 we broadened our program in
collaboration with Kosan Bioscience, Inc., to include the
production of analogues designed to probe the structure-
activity relationship (SAR), as well as to define the critical
minimum structural element necessary for tumor cell growth
inhibition.11 In conjunction with this effort, we assigned the
solution conformation, similar to the solid-state structure, on
the basis of a combination of 1- and 2-D NMR techniques
and computational studies.12,13 A combination of A1,3 and
Scheme 1
(6) Martello, L. A.; McDiad, H. M.; Regl, D. L.; Yang, C. H.; Meng,
D.; Pettus, T. R.; Kaufman, M. D.; Arimoto, H.; Danishefsky, S. J.; Smith,
A. B., III; Horwitz, S. B. Clin. Cancer Res. 2000, 6, 1978-1987.
(7) Klein, L. E.; Freeze, B. S.; Smith, A. B., III; Horwitz, S. B. Cell
Cycle 2005, 4, e124-e130.
(8) (a) Smith, A. B., III; Beauchamp, T. J.; LaMarche, M. J.; Kaufman,
M. D.; Qiu, Y. P.; Arimoto, H.; Jones, D. R.; Kobayashi, K. J. Am. Chem.
Soc. 2000, 122, 8654-8664. (b) Paterson, I.; Florence, G. J.; Gerlach, K.;
Scott, J. P.; Sereing, N. J. Am. Chem. Soc. 2001, 123, 9535-9544. (c)
Harried, S. S.; Yang, G.; Strawn, M. A.; Myles, D. C. J. Org. Chem. 1997,
62, 6098-6099. (d) Marshall, J. A.; Johns, B. A. J. Org. Chem. 1998, 63,
7885-7892. (e) Mickel, S. J.; Sedelmeier, G. H.; Niederer, D.; Daeffler,
R.; Osmani, A.; Schreiner, K.; Seeger-Weibel, M.; Be´rod, B.; Schaer, K.;
Gamboni, R.; Chen, S.; Chen, W.; Jagoe, C. T.; Kinder, F. R.; Loo, M.;
Prasad, K.; Shieh, W.-C.; Wang, R.-M.; Waykole, L.; Xu, D. D.; Xue, S.
Org. Process Res. DeV. 2004, 8, 92-130. (f) Arefolov, A.; Panek, J. J.
Am. Chem. Soc. 2005, 127, 5596-5603.
(9) (a) Hung, D. T.; Nerenberg, J. B.; Schreiber, S. L. Chem. Biol. 1994,
1, 67-71. (b) Choy, N.; Shin, Y.; Nguyen, P. Q.; Curran, D. P.;
Balachandran, R.; Madiraju, C.; Day, B. W. J. Med. Chem. 2003, 46, 2846-
2864.
(10) Recently, we reported a fourth-generation synthesis comprised of a
longest linear sequence of 17 steps and proceeded in 9% overall yield; see:
Smith, A. B., III; Freeze, B. S.; Xian, M.; Hirose, T. Org. Lett. 2005, 7,
1825-1828. Also see: Paterson, I.; Lyothier, I. Org. Lett. 2004, 6, 4933-
4936.
All attempts, however, employing a variety of cyclopro-
panation conditions provided only trace amounts of the
desired cyclopropanes, and then only as mixtures of diaster-
eomers. The related secondary alcohols (+)-6 and (+)-7 were
likewise unreactive.
Attention therefore quickly shifted to an alternative
strategy to construct 8. We reasoned that introduction of the
cyclopropane moiety prior to elaboration of the C(14)-C(15)
bond, employing intermediates such as (+)-9 and (+)-11
readily available in our laboratory, might be feasible. This
synthetic plan called for construction of cyclopropyl iodide
10 (Scheme 1).
Not entirely unexpectedly, direct cyclopropanation of
known vinyl iodide (+)-1111a again proved unsuccessful,
given the electron-deficient nature of the olefin. Literature14
precedent, however, suggested that an allylic hydroxyl group
might significantly augment the chance for successful
cyclopropanation. With this scenario in mind, removal of
the TBS group in (+)-11 and cyclopropanation employing
the conditions of Denmark and co-workers (Scheme 2)
(11) (a) Martello, L. A.; LaMarche, M. J.; He, L.; Beauchamp, T. J.;
Smith, A. B., III; Horwitz, S. B. Chem. Biol. 2001, 8, 843-855. (b) Smith,
A. B., III; Freeze, B. S.; LaMarche, M.; Hirose, T.; Brouard, I.; Xian, M.;
Sundermann, K. F.; Shaw, S. J.; Burlingame, M. A.; Horwitz, S. B.; Myles,
D. C. Org. Lett. 2005, 7, 315-318. (c) Smith, A. B., III; Freeze, B. S.;
LaMarche, M.; Hirose, T.; Brouard, I.; Xian, M.; Sundermann, K. F.; Shaw,
S. J.; Burlingame, M. A.; Horwitz, S. B.; Myles, D. C. Org. Lett. 2005, 7,
311-314. (d) Shaw, S. J.; Sundermann, K. F.; Burlingame, M. A.; Myles,
D. C.; Freeze, B. S.; Xian, M.; Brouard, I.; Smith, A. B., III. J. Am. Chem.
Soc. 2005, 127, 6532-6533.
(13) A similar, albeit not identical solution conformation of (+)-
discodermolide has been proposed by Synder et al.; see: Synder, J. P.;
Nevins, N.; Cicero, D. O. J. Am. Chem. Soc. 2000, 122, 724-725.
(12) Smith, A. B., III; LaMarche, M.; Falcone-Hindley, M. Org. Lett.
2001, 3, 695-698.
4614
Org. Lett., Vol. 7, No. 21, 2005