1628 Chem. Res. Toxicol., Vol. 23, No. 10, 2010
Deng et al.
(21) Zalko, D., Costagliola, R., Dorio, C., Rathahao, E., and Cravedi, J. P.
(2003) In vivo metabolic fate of the xeno-estrogen 4-n-nonylphenol
in Wistar rats. Drug Metab. Dispos. 31, 168–178.
Supporting Information Available: HMBC spectra of
synthetic GSH conjugates. This material is available free of
(22) Tezuka, Y., Takahashi, K., Suzuki, T., Kitamura, S., Ohta, S.,
Nakamura, S., and Mashino, T. (2007) Novel metabolic pathways of
p-n-nonylphenol catalyzed by cytochrome P450 and estrogen receptor
binding activity of new metabolites. J. Health Sci. 53, 552–561.
(23) Iverson, S. L., Hu, L. Q., Vukomanovic, V., and Bolton, J. L. (1995)
The influence of the p-alkyl substituent on the isomerization of
o-quinones to p-quinone methides: potential bioactivation mechanism
for catechols. Chem. Res. Toxicol. 8, 537–544.
(24) Billinsky, J. L., Marcoux, M. R., and Krol, E. S. (2007) Oxidation of
the lignan nordihydroguaiaretic acid. Chem. Res. Toxicol. 20, 1352–
1358.
(25) Rinaldi, A. C., Porcu, M. C., Curreli, N., Rescigno, A., Finazzi-Agro,
A., Pedersen, J. Z., Rinaldi, A., and Sanjust, E. (1995) Autoxidation
of 4-methylcatechol: a model for the study of the biosynthesis of
copper amine oxidases quinonoid cofactor. Biochem. Biophys. Res.
Commun. 214, 559–567.
(26) Shen, L., Pisha, E., Huang, Z., Pezzuto, J. M., Krol, E., Alam, Z., van
Breemen, R. B., and Bolton, J. L. (1997) Bioreductive activation of
catechol estrogen-ortho-quinones: aromatization of the B ring in
4-hydroxyequilenin markedly alters quinoid formation and reactivity.
Carcinogenesis 18, 1093–1101.
(27) Kalyanaraman, B., Sealy, R. C., and Sivarajah, K. (1984) An electron
spin resonance study of o-semiquinones formed during the enzymatic
and autoxidation of catechol estrogens. J. Biol. Chem. 259, 14018–
14022.
(28) Zhang, F., Chen, Y., Pisha, E., Shen, L., Xiong, Y., van Breemen,
R. B., and Bolton, J. L. (1999) The major metabolite of equilin,
4-hydroxyequilin, autoxidizes to an o-quinone which isomerizes to
the potent cytotoxin 4-hydroxyequilenin-o-quinone. Chem. Res. Toxi-
col. 12, 204–213.
(29) Chavdarian, C. G., and Castagnoli, N., Jr. (1979) Synthesis, redox
characteristics, and in vitro norepinephrine uptake inhibiting properties
of 2-(2-mercapto-4,5-dihydroxyphenyl)ethylamine (6-mercaptodopam-
ine). J. Med. Chem. 22, 1317–1322.
(30) Yan, Z., Zhong, H. M., Maher, N., Torres, R., Leo, G. C., Caldwell,
G. W., and Huebert, N. (2005) Bioactivation of 4-methylphenol (p-
cresol) via cytochrome P450-mediated aromatic oxidation in human
liver microsomes. Drug Metab. Dispos. 33, 1867–1876.
(31) Damsten, M. C., de Vlieger, J. S., Niessen, W. M., Irth, H., Vermeulen,
N. P., and Commandeur, J. N. (2008) Trimethoprim: novel reactive
intermediates and bioactivation pathways by cytochrome p450s. Chem.
Res. Toxicol. 21, 2181–2187.
(32) Yu, L., Liu, H., Li, W., Zhang, F., Luckie, C., van Breemen, R. B.,
Thatcher, G. R., and Bolton, J. L. (2004) Oxidation of raloxifene to
quinoids: potential toxic pathways via a diquinone methide and
o-quinones. Chem. Res. Toxicol. 17, 879–888.
(33) Dowers, T. S., Qin, Z. H., Thatcher, G. R., and Bolton, J. L. (2006)
Bioactivation of selective estrogen receptor modulators (SERMs).
Chem. Res. Toxicol. 19, 1125–1137.
(34) Moore, C. D., Reilly, C. A., and Yost, G. S. (2010) CYP3A4-Mediated
oxygenation versus dehydrogenation of raloxifene. Biochemistry 49,
4466–4475.
(35) Wang, Y., Zhong, D., Chen, X., and Zheng, J. (2009) Identification
of quinone methide metabolites of dauricine in human liver mi-
crosomes and in rat bile. Chem. Res. Toxicol. 22, 824–834.
(36) Bolton, J. L., Comeau, E., and Vukomanovic, V. (1995) The influence
of 4-alkyl substituents on the formation and reactivity of 2-methoxy-
quinone methides: evidence that extended pi-conjugation dramatically
stabilizes the quinone methide formed from eugenol. Chem.-Biol.
Interact. 95, 279–290.
(37) Hutzler, J. M., Melton, R. J., Rumsey, J. M., Thompson, D. C., Rock,
D. A., and Wienkers, L. C. (2008) Assessment of the metabolism and
intrinsic reactivity of a novel catechol metabolite. Chem. Res. Toxicol.
21, 1125–1133.
(38) Krol, E. S., and Bolton, J. L. (1997) Oxidation of 4-alkylphenols and
catechols by tyrosinase: ortho-substituents alter the mechanism of
quinoid formation. Chem.-Biol. Interact. 104, 11–27.
(39) O’Brien, P. J. (1991) Molecular mechanisms of quinone cytotoxicity.
Chem.-Biol. Interact. 80, 1–41.
References
(1) Gabriel, F. L., Heidlberger, A., Rentsch, D., Giger, W., Guenther, K.,
and Kohler, H. P. (2005) A novel metabolic pathway for degradation
of 4-nonylphenol environmental contaminants by Sphingomonas
xenophaga Bayram: ipso-hydroxylation and intramolecular rearrange-
ment. J. Biol. Chem. 280, 15526–15533.
(2) Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., and Lester, J. N.
(2008) Nonylphenol in the environment: a critical review on occur-
rence, fate, toxicity and treatment in wastewaters. EnViron. Int. 34,
1033–1049.
(3) Van Liempd, S. M., Kool, J., Meerman, J. H., Irth, H., and Vermeulen,
N. P. (2007) Metabolic profiling of endocrine-disrupting compounds
by on-line cytochrome p450 bioreaction coupled to on-line receptor
affinity screening. Chem. Res. Toxicol. 20, 1825–1832.
(4) Wang, Y., Hu, W., Cao, Z., Fu, X., and Zhu, T. (2005) Occurrence of
endocrine-disrupting compounds in reclaimed water from Tianjin,
China. Anal. Bioanal. Chem. 383, 857–863.
(5) Hu, Y., and Kupfer, D. (2002) Metabolism of the endocrine disruptor
pesticide-methoxychlor by human P450s: pathways involving a novel
catechol metabolite. Drug Metab. Dispos. 30, 1035–1042.
(6) Yoshihara, S., Makishima, M., Suzuki, N., and Ohta, S. (2001)
Metabolic activation of bisphenol A by rat liver S9 fraction. Toxicol.
Sci. 62, 221–227.
(7) Chan, K., Lehmler, H. J., Sivagnanam, M., Feng, C. Y., Robertson,
L., and O’Brien, P. J. (2010) Cytotoxic effects of polychlorinated
biphenyl hydroquinone metabolites in rat hepatocytes. J. Appl. Toxicol.
30, 163–171.
(8) Jiang, H., Gelhaus, S. L., Mangal, D., Harvey, R. G., Blair, I. A., and
Penning, T. M. (2007) Metabolism of benzo[a]pyrene in human
bronchoalveolar H358 cells using liquid chromatography-mass spec-
trometry. Chem. Res. Toxicol. 20, 1331–1341.
(9) Peterson, L. A. (2006) Electrophilic intermediates produced by
bioactivation of furan. Drug Metab. ReV. 38, 615–626.
(10) Inoue, K., Kondo, S., Yoshie, Y., Kato, K., Yoshimura, Y., Horie,
M., and Nakazawa, H. (2001) Migration of 4-nonylphenol from
polyvinyl chloride food packaging films into food simulants and foods.
Food Addit. Contam. 18, 157–164.
(11) Wu, J., Wang, F., Gong, Y., Li, D., Sha, J., Huang, X., and Han, X.
(2009) Proteomic analysis of changes induced by nonylphenol in
Sprague-Dawley rat Sertoli cells. Chem. Res. Toxicol. 22, 668–675.
(12) Gong, Y., Wu, J., Huang, Y., Shen, S., and Han, X. (2009)
Nonylphenol induces apoptosis in rat testicular Sertoli cells via
endoplasmic reticulum stress. Toxicol. Lett. 186, 84–95.
(13) Gong, Y., and Han, X. D. (2006) Nonylphenol-induced oxidative stress
and cytotoxicity in testicular Sertoli cells. Reprod. Toxicol. 22, 623–
630.
(14) Muller, S., Schmid, P., and Schlatter, C. (1998) Evaluation of the
estrogenic potency of nonylphenol in non-occupationally exposed
humans. EnViron. Toxicol. Pharmacol. 6, 27–33.
(15) Moffat, G. J., Burns, A., Van Miller, J., Joiner, R., and Ashby, J.
(2001) Glucuronidation of nonylphenol and octylphenol eliminates
their ability to activate transcription via the estrogen receptor. Regul.
Toxicol. Pharmacol. 34, 182–187.
(16) Feldman, D. (1997) Estrogens from plastic-are we being exposed?
Endocrinology 138, 1777–1779.
(17) Rudel, R. (1997) Predicting health effects of exposures to compounds
with estrogenic activity: methodological issues. EnViron. Health
Perspect. 105 (3), 655–663.
(18) Bolton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G., and Monks,
T. J. (2000) Role of quinones in toxicology. Chem. Res. Toxicol. 13,
135–160.
(19) Zhang, H., Zhu, M., Ray, K. L., Ma, L., and Zhang, D. (2008) Mass
defect profiles of biological matrices and the general applicability of
mass defect filtering for metabolite detection. Rapid Commun. Mass
Spectrom. 22, 2082–2088.
(20) Yan, Z., Caldwell, G. W., and Maher, N. (2008) Unbiased high-
throughput screening of reactive metabolites on the linear ion trap
mass spectrometer using polarity switch and mass tag triggered data-
dependent acquisition. Anal. Chem. 80, 6410–6422.
(40) Bolton, J. L., and Thatcher, G. R. (2008) Potential mechanisms of
estrogen quinone carcinogenesis. Chem. Res. Toxicol. 21, 93–101.
TX100223H