O. Lack, R. E. Martin / Tetrahedron Letters 46 (2005) 8207–8211
8211
cabinet using the UV image processing software Video-
Scan TLC/HPTLC 1.0.01 and Video Store 2.25ꢀ from
Synoptics Ltd, Camag.
References and notes
1. (a) Coulson, C. A.; Moffitt, W. E. J. Chem. Phys. 1947, 15,
151; (b) Walsh, A. D. Nature 1947, 165, 712–713; (c)
Walsh, A. D. Trans. Faraday Soc. 1949, 45, 179–190; (d)
Cremer, D.; Gauss, J. J. Am. Chem. Soc. 1986, 108, 7467–
7477.
2. Wessjohann, L. A.; Brandt, W.; Thiemann, T. Chem. Rev.
2003, 103, 1625–1647.
3. (a) Paquette, L. A. Chem. Rev. 1986, 86, 733–750; (b)
Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C.
Chem. Rev. 1989, 89, 165–198; (c) de Meijere, A.;
17. Single crystals of 8c and 9c were obtained by slow
evaporation of dichloromethane from
dichloromethane and heptane (1:1).
a mixture of
18. Crystallographic data for the structures in this paper have
been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication numbers CCDC
272207 and 272208. These data can be obtained, free of
charge, on application to CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK [fax: +44(0) 1223 336033 or
e-mail: deposit@ccdc.cam.ac.uk].
Wessjohann, L. A. Synlett 1990, 1, 20–32; (d) Salaun, J.
¨
19. A search in the CSD database (CSD Version 5.26,
November 2004, holding over 325Õ000 crystal structures
of organic and metallorganic compounds) revealed two
structurally close analogues. In the first structure the
benzodiazepinone is annelated by a tetrahydropyrane ring
(ref. code ITEPIG, Abrous, L.; Jokiel, P. A.; Friedrich,
S. R.; Hynes, J., Jr.; Smith, A. B., III; Hirschmann, R.
J. Org. Chem. 2004, 69, 280–302) showing a similar Ôboat-
like envelopeÕ conformation as the cyclopropanated
compound 9c. In contrast, the second structure, a closely
related benzazepinone (ref. code ISIFIZ, Yoshida, H.;
Shirakawa, E.; Honda, Y.; Hiyama, T.; private commu-
nication to the CSD), lacking the spirocyclopropane
moiety of 9c, displays a twist-like conformation as
typically observed for many benzodiazepinone derivatives.
20. Compounds were purified by preparative HPLC on an
Xterraꢂ PrepMSC18, 5 lm, 19 · 50 mm column equipped
with a Gilson Liquid Handler 215 autosampler, two
Rainin Dynamaxꢂ SD-300 pumps a Sedex ELSD 75
lightscatter and a Dionex UVD 340S UV detector.
21. Kansy, M.; Senner, F.; Gubernator, K. J. Med. Chem.
1998, 41, 1007–1010.
Top. Curr. Chem. 2000, 207, 1–68; (e) de Meijere, A.;
Kozhushkov, S. I.; Hadjiarapoglou, L. P. Top. Curr.
Chem. 2000, 207, 149–228; (f) Reissig, H.-U.; Zimmer, R.
Chem. Rev. 2003, 103, 1151–1196.
4. de Meijere, A. Chem. Rev. 2003, 103, 931–932.
5. (a) Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R.
M.; Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.;
Veber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti, V.
J.; Cerino, D. J.; Chen, T. B.; Kling, P. J.; Kunkel, K. A.;
Springer, J. P.; Hirshfield, J. J. Med. Chem. 1988, 31,
2235–2246; (b) Patchett, A. A.; Nargund, R. P. Annu. Rep.
Med. Chem. 2000, 35, 289–298.
6. Sternbach, L. H. J. Med. Chem. 1979, 22, 1–7.
7. Pritchett, D. B.; Seeburg, P. H. J. Neurochem. 1990, 54,
1802–1804.
8. Konishi, M.; Hatori, M.; Tomita, K.; Sugawara, M.;
Ikeda, C.; Nishiyama, Y.; Imanishi, H.; Miyaki, T.;
Kawaguchi, H. J. Antibiot. (Tokyo) 1984, 37, 191–199.
9. (a) Goetz, M. A.; Lopez, M.; Monaghan, R. L.; Chang, R.
S. L.; Lotti, V. J.; Chen, T. B. J. Antibiot. (Tokyo) 1985,
38, 1633–1637; (b) Chang, R. S. L.; Lotti, V. J.; Mona-
ghan, R. L.; Birnbaum, J.; Stapley, E. O.; Goetz, M. A.;
Albers-Scho¨nberg, G.; Patchett, A. A.; Liesch, J. M.;
Hensens, O. D.; Springer, J. P. Science 1985, 230, 177–179.
10. Klapars, A.; Parris, S.; Anderson, K. W.; Buchwald, S. L.
J. Am. Chem. Soc. 2004, 126, 3529–3533.
11. (a) Kulinkovich, O. G.; Sviridov, S. V. Zh. Org. Khim.
1989, 25, 2244–2245; (b) Kulinkovich, O. G.; Sviridov, S.
V.; Vasilevski, D. A. Synthesis 1991, 234; (c) Kulinkovich,
O. G. Chem. Rev. 2003, 103, 2597–2632.
12. (a) Chaplinski, V.; de Meijere, A. Angew. Chem., Int. Ed.
1996, 35, 413–414; (b) de Meijere, A.; Kozhushkov, S. I.;
Savchenko, A. I. J. Organomet. Chem. 2004, 689, 2033–
2055.
22. Spectroscopic data for compound 8c: 1H NMR (300 MHz,
DMSO): d 3.14 (s, 3H), 3.68 (s, 3H), 3.76 (d, J = 14.8 Hz,
1H), 4.15 (d, J = 14.8 Hz, 1H), 4.90 (d, J = 15.7 Hz, 1H),
5.25 (d, J = 15.7 Hz, 1H), 6.80 (d, J = 8.7 Hz, 2H), 7.01
(d, J = 8.7 Hz, 2H), 7.24–7.65 (m, 4H). 13C NMR
(75 MHz, DMSO): d 35.16, 48.16, 52.33, 54.94, 113.87,
121.98, 125.40, 128.07, 128.91, 129.52, 129.94, 131.68,
139.29, 158.26, 166.32, 167.97. FTIR (ATR, cmꢀ1): 2934
(w), 2839 (w), 1672 (s), 1632 (s), 1601 (s), 1512 (s), 1466
(m), 1397 (m), 1240 (s), 1213 (m), 1174 (m). HRMS (EI
POS) m/z calculated for C18H18N2O3 (M)+: 310.1317,
found: 310.1317.
23. Spectroscopic data for compound 9c: 1H NMR (300 MHz,
CDCl3): d 0.65 (t, J = 6.6 Hz, 2H), 0.92 (t, J = 6.6 Hz,
2H), 3.08 (s, 3H), 3.31 (s, 2H), 3.70 (s, 3H), 4.40 (s, 2H),
6.65 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 8.6 Hz, 2H), 6.89
(t, J = 7.9 Hz, 1H), 7.01 (d, J = 8.6 Hz, 2H), 7.14
(td, J = 8.0 Hz, J = 1.7 Hz, 1H), 8.11 (dd, J = 7.9 Hz,
J = 1.7 Hz, 1H). 13C NMR (75 MHz, CDCl3): d 14.01,
37.91, 45.66, 55.24, 56.58, 58.98, 113.97, 120.66, 120.86,
126.42, 127.67, 131.46, 131.74, 133.14, 148.62, 158.68,
169.28. FTIR (ATR, cmꢀ1): 2923 (w), 2853 (w), 1621 (s),
1595 (s), 1587 (m), 1507 (s), 1482 (s), 1455 (m), 1389 (m),
1284 (m), 1241 (s), 1212 (s), 1167 (s). HRMS (EI POS) m/z
calculated for C20H22N2O2 (M)+: 322.1681, found:
322.1681.
13. Lee, J.; Cha, J. K. J. Org. Chem. 1997, 62, 1584–1585.
14. Compound 6 was prepared in 75% yield by reaction of 3,4-
dimethoxy-benzyl-protected isatoic acid anhydride with
glycine at 125 ꢁC for 3 h followed by stirring at rt
overnight in concd acetic acid.
15. (a) Chaplinski, V.; Winsel, H.; Kordes, M.; de Meijere, A.
Synlett 1997, 111–114; (b) de Meijere, A.; Winsel, H.;
Stecker, B. Organic Syntheses Annual Vol. 81, p. 14
16. To guide the optimization process, the ratio of products 9b
and 10b to starting material 8b was assessed by analyt.
HPLC. Due to the inability to resolve the reaction
products 9b and 10b by HPLC they were quantified via
TLC spot analysis conducted by a Camag Reprostar 3 UV