Communication
ChemComm
Org. Lett., 2019, 21, 2927; ( f ) L. Gao, G. Wang, J. Cao, D. Yuan, C. Xu,
X. Guo and S. Li, Chem. Commun., 2018, 54, 11534; (g) W.-M. Cheng,
R. Shang, B. Zhao, W.-L. Xing and Y. Fu, Org. Lett., 2017, 19, 4291;
(h) J. Hu, G. Wang, S. Li and Z. Shi, Angew. Chem., Int. Ed., 2018,
57, 15227; (i) A. Fawcett, J. Pradeilles, Y. Wang, T. Mutsuga,
E. L. Myers and V. K. Aggarwal, Science, 2017, 357, 283; ( j) J. Wu,
L. He, A. Noble and V. K. Aggarwal, J. Am. Chem. Soc., 2018,
140, 10700; (k) L. Zhang and L. Jiao, J. Am. Chem. Soc., 2019,
141, 9124; (l) L. Zhang, Z.-Q. Wu and L. Jiao, Angew. Chem., Int.
Ed., 2020, 59, 2095; (m) J.-Q. Qi and L. Jiao, J. Org. Chem., 2020,
85, 13877; (n) S. Pinet, V. Liautard, M. Debiais and M. Pucheault,
Synthesis, 2017, 4759; (o) D. Chen, G. Xu, Q. Zhou, L. W. Chung and
W. Tang, J. Am. Chem. Soc., 2017, 139, 9767.
7 G. Wang, H. Zhang, J. Zhao, W. Li, J. Cao, C. Zhu and S. Li, Angew.
Chem., Int. Ed., 2016, 55, 5985.
8 (a) G. Wang, J. Cao, L. Gao, W. Chen, W. Huang, X. Cheng and S. Li,
J. Am. Chem. Soc., 2017, 139, 3904; (b) L. Gao, G. Wang, H. Chen,
J. Cao, X. Su, X. Liu, M. Yang, X. Cheng and S. Li, Org. Chem. Front.,
2020, 7, 2744; (c) J. Cao, G. Wang, L. Gao, X. Cheng and S. Li, Chem.
Sci., 2018, 9, 3664.
9 (a) L. Zhang and L. Jiao, Chem. Sci., 2018, 9, 2711; (b) M. Zhou, K. Li,
D. Chen, R. Xu, G. Xu and W. Tang, J. Am. Chem. Soc., 2020,
142, 10337.
10 B2pin2-mediated reductive coupling of carbonyl compounds with
4-cyanopyridine has been reported (ref. 8a and b). However, such
reactivity was not observed under our conditions.
11 (a) A. K. L. Yuen and C. A. Hutton, Tetrahedron Lett., 2005, 46, 7899;
(b) S. R. Inglis, E. C. Y. Woon, A. L. Thompson and C. J. Schofield,
J. Org. Chem., 2010, 75, 468; (c) The typical basic hydrolysis with aq.
Na2CO3 (ref. 8) is ineffective for the current pinacol coupling. To
break up the strong chelation of the diol product with boron, the
KHF2 workup was adopted, which is generally employed for the
conversion of R-Bpin to R-BF3K (i.e. the removal of pinacol from
boron).
12 The unpaired electron of the pyridine-boryl radical is known to
delocalize over the pyridine aromatic ring. Thus, pyridines with
extended conjugation have been typically employed in the pyridine-
boryl radical chemistry. See ref. 6e.
have a p–p stacking interaction, the other phenyl ring adopts
almost coplanar conformation with the carbonyl group to
delocalize the ketyl radical. Thus, the stabilizing effects are
maximized when both phenyl rings are present, which explains
the high efficiency of the pinacol coupling of benzophenone.
(See the ESI† for the comparison with isomeric transition
structures that lack the p–p stacking interaction.) Accordingly,
higher activation energy is required for the ketyl radical
formation of acetophenone which has only one phenyl ring.
In summary, a convenient pinacol coupling of diaryl ketones
was developed via the combined use of B2pin2 and a catalytic
amount of methyl isonicotinate for the formation of the ketyl
radical intermediate. In this new process, the use of sensitive
reducing metal reagents and an additional pre-activation step
are avoided. The remarkable efficiency of the current method
was demonstrated by the short reaction time (1 hour) as well as
the high chemical yield (up to 99%). The superior performance
of diaryl ketones over monoaryl substrates was rationalized by
the DFT calculations, and it was found that both phenyl groups
of benzophenone contribute to the stability of the transition
states. Further efforts on reaction scope expansion are currently
ongoing in our laboratory.
This research was supported by the Technology Development
Program to Solve Climate Changes through the National
Research Foundation (NRF) of Korea funded by the Ministry of
Science, ICT & Future Planning (NRF-2017M1A2A2049102).
Conflicts of interest
13 (a) Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215;
(b) Y. Zhao and D. G. Truhlar, Acc. Chem. Res., 2008, 41, 157.
14 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson,
H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino,
B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian,
J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young,
F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone,
T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,
G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro,
M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin,
V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar,
J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi,
J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas,
J. B. Foresman and D. J. Fox, Gaussian 16, Revision C.01, Gaussian,
Inc., Wallingford CT, 2019.
There are no conflicts to declare.
Notes and references
1 (a) C. S. Swindell and W. Fan, J. Org. Chem., 1996, 61, 1109;
(b) K. C. Nicolaou, Z. Yang, E. J. Sorensen and M. Nakada,
J. Chem. Soc., Chem. Commun., 1993, 1024; (c) J. E. McMurry and
N. O. Siemers, Tetrahedron Lett., 1994, 35, 4505; (d) C. S. Swindell,
W. Fan and P. G. Klimko, Tetrahedron Lett., 1994, 35, 4959;
(e) J. E. McMurry and R. G. Dushin, J. Am. Chem. Soc., 1989,
111, 8928.
2 (a) M. Takeda, A. Mitsui, K. Nagao and H. Ohmiya, J. Am. Chem. Soc.,
2019, 141, 3664; (b) B. Breit, R. D. Broene, C.-A. Fan, A. Gansauer,
¨
T. Hirao, H. Iida, J. Justicia, M. Kimura, M. J. Krische, J. Montgomery,
H. Nishiyama, F. Piestert, T. Shiomi, G. J. Sormunen, Y. Tamaru and
D. Worgull, Metal Catalyzed Reductive C–C Bond Formation, Springer
Berlin Heidelberg, New York, 2007.
3 (a) B. E. Kahn and R. D. Rieke, Chem. Rev., 1988, 88, 733;
(b) S. Talukdar and J.-M. Fang, J. Org. Chem., 2001, 66, 330;
(c) M. Hulce and T. LaVaute, Tetrahedron Lett., 1988, 29, 525.
4 For a recent review, see: Q. Xia, J. Dong, H. Song and Q. Wang,
Chem. – Eur. J., 2019, 25, 2949.
´
15 C. Y. Legault, CYLview 1.0b, Universite de Sherbrooke, 2009 (http://
16 A similar computational investigation has been performed at the
same level of theory with 4-(4-cyanophenyl)pyridine and isobutyral-
dehyde by S. Li and coworkers (ref. 8c). Although the direct compar-
ison is difficult because a different pyridine catalyst was used in their
study, the activation energies for the ketyl radical formation of
5 Z. Qiu, H. D. M. Pham, J. Li, C.-C. Li, D. J. Castillo-Pazos,
R. Z. Khaliullin and C.-J. Li, Chem. Sci., 2019, 10, 10937.
6 (a) L. Gao, G. Wang, J. Cao, H. Chen, Y. Gu, X. Liu, X. Cheng, J. Ma
and S. Li, ACS Catal., 2019, 9, 10142; (b) J. L. Koniarczyk,
J. W. Greenwood, J. V. Alegre-Requena, R. S. Paton and
A. McNally,, Angew. Chem., Int. Ed., 2019, 58, 14882; (c) R. Xu,
G.-p. Lu and C. Cai, New J. Chem., 2018, 42, 16456; (d) J. Cao,
G. Wang, L. Gao, H. Chen, X. Liu, X. Cheng and S. Li, Chem. Sci.,
2019, 10, 2767; (e) A. Guo, J.-B. Han, L. Zhu, Y. Wei and X.-Y. Tang,
isobutyraldehyde were substantially higher (13.3, 14.3 kcal molꢀ1
)
than our data probably because of the absence of p–p stacking
interaction. In a more recent report, the ketyl radical formation of
acetone with 4-cyanopyridine was calculated using a different DFT
functional, and high activation energies (15.8, 24.1 kcal molꢀ1) were
again obtained (ref. 8b).
1363 | Chem. Commun., 2021, 57, 1360ꢀ1363
This journal is The Royal Society of Chemistry 2021