Inorganic Chemistry
Article
in benzene to give a pale yellow solution. The resulting solution was
allowed to stir for 24 h. The volatile materials were evaporated in
vacuo resulting in a white solid which was washed with pentane to
find that CO dissociation from a low-valent metal complex is
not a necessary prerequisite for oxidative addition of nonpolar
substrates. The presence of coordinating groups, either as part
of polar substrates, ancillary ligands, or as σ-complexes, may
also facilitate coordination, oxidative addition, and CO
dissociation during catalytic conversions.
give pure {PhB(OxMe )2ImMes}RhH(SiH2C12H25)CO(65 mg, 0.08
2
mmol, 50%). 1H NMR(benzene-d6, 600 MHz): δ 8.41 (d, 3JHH = 7.8
3
Hz, 2 H, o-BC6H5), 7.54 (t, JHH = 7.2 Hz, 2 H, m-BC6H5), 7.4 (t,
3JHH = 7.2 Hz, 1 H, p-BC6H5), 6.84 (s, 1 H, m-C6H2Me3), 6.80 (s, 1
H, m-C6H2Me3), 6.54 (d, 3JHH = 1.6 Hz, 1 H, N2C3H2Mes), 5.94 (d,
3JHH = 1.8 Hz, 1 H, N2C3H2Mes), 4.26 (t, 3JHH = 7.2 Hz, 1JSiH = 160
EXPERIMENTAL SECTION
■
3
1
General. All reactions were performed under a dry argon
atmosphere using standard Schlenk techniques or under a nitrogen
atmosphere in a glovebox. Benzene, toluene, methylene chloride,
pentane, and tetrahydrofuran were dried and deoxygenated using an
IT PureSolv system. Benzene-d6 was heated to reflux over Na/K alloy
Hz, 1 H, SiH), 3.81 (t, JHH = 6.6 Hz, JSiH = 180 Hz, 1 H, SiH),
2
3.64−3.57(m, 3 H, CNCMe2CH2O), 3.35 (d, JHH = 8.4 Hz, 1 H,
CNCMe2CH2O), 2.26 (s, 3 H, p-C6H2Me3), 2.09 (s, 3 H, o-
C6H2Me3), 2.03 (s, 3 H, o-C6H2Me3), 1.58 (br, 2 H, SiCH2CH2),
1.33−1.29 (br, 21 H, CH2CH2CH2), 1.23 (s, 3 H, CNCMe2CH2O
trans to H), 1.16 (s, 3 H, CNCMe2CH2O trans to H), 1.10 (s, 3 H,
CNCMe2CH2O trans to Si), 0.99 (s, 3 H, CNCMe2CH2O trans to
Si), 0.93 (t, 3JHH = 7.2 Hz, 3 H, CH2CH3), 0.44 (m, 1 H, SiH2CH2),
and vacuum transferred. [Rh(μ-Cl)(CO)2]2,63 {PhB(OxMe )2ImMes}-
2
57
Rh(CO)2 (1), {PhB(OxMe )2ImMes}RhH(SiH2Ph)CO, and p-
2
methoxyphenylsilane were synthesized according to the literature
procedures.64 Phenylsilane, n-hexylsilane, n-dodecylsilane, and p-
tolylsilane were synthesized by reducing corresponding trichlorosi-
lanes with LiAlH4. PhSiD3 was synthesized from PhSiCl3 and LiAlD4.
Potassium benzyl was synthesized by reacting potassium tert-butoxide
with n-BuLi in toluene.65
1
3
−0.07 (m, 1 H, SiH2CH2), −13.68 (dd, JRhH = 22.2 Hz, JHH = 1.8
Hz, 1 H, RhH). 13C{1H} NMR (benzene-d6, 150 MHz): δ 195.06 (d,
1JRhC = 52.8 Hz, 2C−N2C3H2Mes), 185.79 (br, CNCMe2CH2O),
179.23 (d, 1JRhC = 40.7 Hz, CO), 138.49 (p-C6H2Me3), 137.60 (ipso-
C6H2Me3), 136.70 (o-C6H2Me3), 136.66 (o-C6H2Me3), 136.39 (o-
BC6H5), 129.59 (m-C6H2Me3), 129.52 (m-C6H2Me3) 127.51 (m-
BC6H5), 127.04 (p-BC6H5), 124.61 (4,5-CN2C3H2Mes), 121.12 (4,5-
CN2C3H2Mes), 80.40 (CNCMe2CH2O), 80.39 (CNCMe2CH2O),
68.79 (CNCMe2CH2O), 66.64 (CNCMe2CH2O), 34.00 (CH2),
32.38 (CH2), 30.37 (CH2), 30.31 (CH2), 30.26 (CH2), 30.19
(CH2), 29.94 (CH2), 29.87 (CH2), 28.37 (CNCMe2CH2O), 28.08
(CNCMe2CH2O), 28.02 (CNCMe2CH2O), 27.03 (CNCMe2CH2O),
23.16 (CH2), 21.18 (p-C6H2Me3), 19.53 (o-C6H2Me3), 19.38 (o-
C6H2Me3), 18.02 (CH2), 18.01 (CH2), 14.41 (CH3). 15N{1H} NMR
(benzene-d6, 61 MHz): δ −160 (CNCMe2CH2O trans to Si), −172
(CNCMe2CH2O trans to H), −175 (N2C3H12Mes), −188
(N2C3H2Mes). 11B NMR (benzene-d6, 192 MHz): δ −9.7. 29Si{1H}
NMR (benzene-d6, 119 MHz): δ −18.9. IR (KBr, cm−1): 2957, 2922,
2852, 2149, 2044, 2013, 1595, 1463, 1365, 1316, 1183, 1160, 968.
1H, 13C{1H}, 11B, and 15N spectra were collected on Bruker Avance
III 600 or AVNEO 400 MHz NMR spectrometers. NMR signals (1H,
13C, and 15N) were assigned based on COSY, HMQC, and HMBC
experiments. 15N chemical shifts were determined by 1H−15N HMBC
experiments. 15N chemical shifts were initially referenced to NH3 and
recalibrated to the CH3NO2 chemical shift scale by adding −381.9
ppm. Infrared spectra were recorded on a Bruker Vertex spectrometer.
Elemental analyses were performed using a PerkinElmer 2400 Series
II CHN/S in the Iowa State Chemical Instrumentation Facility.
{PhB(OxMe )2ImMes}RhH(SiH2C6H13)CO (2b). n-Hexylsilane (185
2
mg, 1.6 mmol) was added to a solution of 1 (100 mg, 0.158
mmol) in benzene to give a pale yellow solution. The resulting
solution was allowed to stir for 24 h. The volatile materials were
evaporated in vacuo giving {PhB(OxMe )2ImMes}RhH(SiH2C6H13)CO
2
(88 mg, 0.123 mmol, 78%). 1H NMR (benzene-d6, 600 MHz): δ 8.40
{PhB(OxMe )2ImMes}RhH(SiH2C6H4Me)CO (2d). p-Tolylsilane (195
2
3
3
(d, JHH = 7.8 Hz, 2 H, o-BC6H5), 7.54 (t, JHH = 7.8 Hz, 2 H, m-
mg, 1.6 mmol) was added to a solution of 1 (100 mg, 0.158 mmol) in
benzene to give a pale yellow solution. The resulting solution was
allowed to stir for 24 h. The volatile materials were evaporated in
3
BC6H5), 7.39 (t, JHH = 7.3 Hz, 1 H, p-BC6H5), 6.83 (s, 1 H, m-
3
C6H2Me3), 6.78 (s, 1 H, m-C6H2Me3), 6.53 (d, JHH = 1.6 Hz, 1 H,
N2C3H2Mes), 5.94 (d, 3JHH = 1.6 Hz, 1 H, N2C3H2Mes), 4.91 (t, 3JHH
vacuo giving {PhB(OxMe )2ImMes}RhH(SiH2C6H4Me)CO with some
2
= 6.8 Hz, 1JSiH = 168 Hz, 1 H, SiH), 4.43 (t, 3JHH = 6.8 Hz, 1JSiH = 180
residual p-tolylsilane. This mixture was characterized by NMR and IR
spectroscopy; the residual silane hindered 13C{1H} NMR assignments
in the aryl region. An X-ray quality crystal was obtained from a
pentane solution; however, this approach was not reliable for
2
Hz, 1 H, SiH), 3.60 (m, 3 H, CNCMe2CH2O), 3.36 (d, JHH = 8.3
Hz, 1 H, CNCMe2CH2O), 2.23 (s, 3 H, p-C6H2Me3), 2.09 (s, 3 H, o-
C6H2Me3), 2.02 (s, 3 H, o-C6H2Me3), 1.55 (br, 2 H, SiCH2CH2),
1.33−1.40 (br, 6 H, CH2CH2CH2), 1.23 (s, 3 H, CNCMe2CH2O
trans to H), 1.16 (s, 3 H, CNCMe2CH2O trans to H), 1.10 (s, 3 H,
CNCMe2CH2O trans to Si), 0.99 (s, 3 H, CNCMe2CH2O trans to Si),
0.95 (t, 3JHH = 7 Hz, 3 H, CH2CH3), 0.41 (m, 1 H, SiH2CH2), −0.12
1
purification from residual p-tolylsilane. H NMR (benzene-d6, 600
3
3
MHz): δ 8.43 (d, JHH = 7.8 Hz, 2 H, o-BC6H5), 7.56 (t, JHH = 7.2
Hz, 2 H, m-BC6H5), 7.52 (d, 3JHH = 7.8 Hz, 2 H, o-C6H4Me), 7.41 (t,
3JHH = 7.2 Hz, 1 H, p-BC6H5), 6.95 (d, JHH = 7.8 Hz, 2 H, m-
3
(m, 1 H, SiH2CH2), −13.70 (dd, 1JRhH = 22.4 Hz, 3JHH = 1.5 Hz, 1 H,
C6H4Me), 6.55 (d, 3JHH = 1.8 Hz, 1 H, N2C3H2Mes), 6.54 (s, 1 H, m-
1
RhH). 13C{1H} NMR (benzene-d6, 150 MHz): δ 195.05 (d, JRhC
=
3
1
C6H2Me3), 6.41 (s, 1 H, m-C6H2Me3), 5.94 (d, JHH = 1.8 Hz, 1 H,
51.9 Hz, 2C-N2C3H2Mes), 179.24 (d, JRhC = 40.5 Hz, CO), 138.49
(br, ipso-BC6H5), 137.58 (p-C6H2Me3), 136.70 (o-C6H2Me3), 136.64
(o-BC6H5), 136.36 (o-C6H2Me3), 129.58 (m-C6H2Me3), 129.51 (m-
C6H2Me3), 127.50 (m-BC6H5), 127.03 (p-BC6H5), 124.60 (4,5C−
N2C3H2Mes), 121.12 (4,5C−N2C3H2Mes), 80.40 (CNCMe2CH2O),
80.39 (CNCMe2CH2O), 68.79 (CNCMe2CH2O), 66.64
(CNCMe2CH2 O), 33.64 (CH2), 32.32 (CH2), 29.88
(CNCMe2CH2O), 28.37 (CNCMe2CH2O), 28.08 (CNCMe2CH2O),
27.03 (CNCMe2CH2O), 23.29 (CH2), 21.16 (p-C6H2Me3), 19.52 (o-
C6H2Me3), 19.37 (o-C6H2Me3), 18.01 (CH2), 17.99 (CH2), 14.50
(CH3). 15N{1H} NMR (benzene-d6, 61 MHz): δ −160
(CNCMe2CH2O trans to Si), −172 (CNCMe2CH2O trans to H),
−188 (N2C3H2Mes). 11B NMR (benzene-d6, 192 MHz): δ −9.7.
29Si{1H} NMR (benzene-d6, 119 MHz): δ −19.2. IR (KBr, cm−1):
3135, 3043, 2959, 2923, 2733, 2359, 2279, 2041, 2011, 1652, 1595,
1458, 1275, 967, 820. Anal. calcd for C35H50BN4O3RhSi: C, 58.66; H,
7.03; N, 7.82. Found: C, 58.68; H, 7.21; N, 7.61
N2C3H2Mes), 4.91 (t, 2JHH = 4.8 Hz, 1JSiH = 170 Hz, 1 H, SiH), 4.45
2
1
(d, JHH = 4.8 Hz, JSiH = 186 Hz, 1 H, SiH), 3.57−3.65 (m, 3 H,
CNCMe2CH2O), 3.37 (d, 2JHH = 8.4 Hz, 1 H, CNCMe2CH2O), 2.18
(s, 3 H, p-C6H2Me3), 2.03 (s, 3 H, o-C6H2Me3), 2.00 (s, 3 H, o-
C6H2Me3), 1.90 (s, 3 H, p-C6H4Me), 1.16 (3 H, CNCMe2CH2O),
1.16 (3 H, CNCMe2CH2O), 1.08 (3 H, CNCMe2CH2O), 1.02 (3 H,
1
3
CNCMe2CH2O), −13.22 (dd, JRhH = 21.6 Hz, JHH = 2.4 Hz, 1 H,
RhH). 13C{1H} NMR(benzene-d6, 150 MHz): δ 194.48 (d, JRhC
=
1
1
52.9 Hz, 2C-N2C3H2Mes), 178.40 (d, JRhC = 40.8 Hz, CO), 138.29
(ipso-SiC6H4Me), 136.96 (p-C6H2Me3), 136.68 (ipso-C6H2Me3),
136.67 (o-BC6H5), 129.34 (o-SiC6H4Me), 129.31 (m-SiC6H4Me),
127.54 (m-C6H2Me3), 127.07 (m-C6H2Me3), 124.60 (4,5C−
N2C3H2Mes), 121.50 (4,5C−N2C3H2Mes), 80.49 (CNCMe2CH2O),
80.31 (CNCMe2CH2O), 68.80 (CNCMe2CH2O), 66.70
(CNCMe2CH2O), 28.38 (CNCMe2CH2O), 28.07 (CNCMe2CH2O),
27.78 (CNCMe2CH2O), 27.03 (CNCMe2CH2O), 21.48 (p-
C6H2Me3), 21.04 (p-SiC6H4Me), 19.49 (o-C6H2Me3), 19.08 (o-
C6H2Me3). 15N{1H} NMR (benzene-d6, 61 MHz): δ −161
{PhB(OxMe )2ImMes}RhH(SiH2C12H25)CO (2c). n-dodecylsilane (318
2
mg, 1.59 mmol) was added to a solution of 1 (100 mg, 0.159 mmol)
G
Inorg. Chem. XXXX, XXX, XXX−XXX